
Vivado Design Suite User
Guide

Using Tcl Scripting

UG894 (v2022.1) June 8, 2022

See all versions
of this document

Xilinx is creating an environment where employees, customers, and
partners feel welcome and included. To that end, we’re removing non-
inclusive language from our products and related collateral. We’ve
launched an internal initiative to remove language that could exclude
people or reinforce historical biases, including terms embedded in our
software and IPs. You may still find examples of non-inclusive
language in our older products as we work to make these changes and
align with evolving industry standards. Follow this link for more
information.

https://www.xilinx.com
https://www.xilinx.com/bin/public/docSeeAllVersions?productType=DesignTools&documentId=UG894
https://www.xilinx.com/content/dam/xilinx/publications/about/Inclusive-terminology.pdf

Table of Contents
Chapter 1: Tcl Scripting in Vivado..3

Introduction... 3
A Brief Overview of Tcl.. 5
Getting Help...8
Platform Specific Tcl Behaviors..9
Compilation and Reporting Example Scripts... 10
Loading and Running Tcl Scripts... 18
Writing a Tcl Script.. 24
Accessing Design Objects.. 36
Handling Lists of Objects..53
Redirecting Output..55
Controlling Loops.. 61
Error Handling... 62
Accessing Environment Variables... 65
Calling External Programs..65
Vivado Integrated Design Environment (IDE)/Tcl Modes versus Batch Mode..................66
Creating Custom Design Rules Checks (DRCs)..67
Custom GUI Buttons... 72
Xilinx Tcl Store..75
Tcl Scripting Tips..103

Appendix A: Additional Resources and Legal Notices........................... 109
Xilinx Resources...109
Documentation Navigator and Design Hubs.. 109
References..109
Revision History...110
Please Read: Important Legal Notices... 110

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 2Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=2

Chapter 1

Tcl Scripting in Vivado

Introduction
The Tool Command Language, or Tcl, is an interpreted programming language with variables,
procedures (procs), and control structures, to interface to a variety of design tools and to the
design data.

TIP: For more information, see the Vivado Design Suite Tcl Command Reference Guide (UG835), or type
<command> -help. For information on launching and using the Vivado® Design Suite, see the Vivado
Design Suite User Guide: Getting Started (UG910).

The language is easily extended with new function calls, and has been expanded to support new
tools and technology since its inception and adoption in the early 1990s. It has been adopted as
the standard application programming interface, or API, among most EDA vendors to control and
extend their applications.

Xilinx has adopted Tcl as the native programming language for the Vivado Design Suite, as it is
easily adopted and mastered by designers familiar with this industry standard language. The Tcl
interpreter inside the Vivado Design Suite provides the full power and flexibility of Tcl to control
the application, access design objects and their properties, and create custom reports. Using Tcl,
you can adapt your design flow to meet specific design challenges.

Tcl provides built-in commands to read and write files to the local file system. This enables you to
dynamically create directories, start FPGA design projects, add files to the projects, run synthesis
and implementation. You can customize the reports generated from design projects, on device
usage and quality of results, to share across the organization.

You can also use Tcl to implement new design approaches, or work around existing problems,
inserting and deleting design objects, or modifying properties as needed. You can write scripts to
replay established portions of your design flow to standardize the process.

Many of the Tcl commands discussed in the following text and script examples are specific to the
Vivado Design Suite. You can find detailed information regarding Tcl commands specific to the
Vivado Design Suite in the Vivado Design Suite Tcl Command Reference Guide (UG835), or in the
Help system of the Vivado tools.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 3Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug835-vivado-tcl-commands
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug910-vivado-getting-started
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug835-vivado-tcl-commands
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=3

The Vivado®IDE uses Xilinx Design Constraints (XDC) to specify the design constraints. XDC is
based on a subset of all the Tcl commands available in Vivado and is interpreted exactly like Tcl.
The XDC commands are primarily timing constraints, physical constraints, object queries and a
few Tcl built-in commands: set, list, and expr. For a complete description of the XDC
commands, see Appendix B of the Vivado Design Suite User Guide: Using Constraints (UG903).
Unlike Tcl scripts, XDC files are managed by the Vivado IDE so that any constraint edited through
the graphical interface or the Timing Constraints Editor can be saved back to its original XDC file.
For this reason, only XDC commands can be used in a XDC file. If you need to use other Tcl
commands to write your constraints, you must use a Tcl script.

The Vivado tools write a journal file called vivado.jou into the directory from which Vivado
was launched. The journal is a record of the Tcl commands run during the session that can be
used as a starting point to create new Tcl scripts.

A log file, vivado.log is also created by the tool and includes the output of the commands that
are executed. Both the journal and log file are useful to verify which commands were run and
what result they produced.

Additional Tcl commands are provided by the Tcl interpreter that is built into the Vivado Design
Suite. For Tcl built-in commands, Tcl reference material is provided by the Tcl Developer Xchange
website, which maintains the open source code base and documentation for Tcl, and is located at
Tcl Developer Xchange.

See this tutorial for an introductory tutorial to the Tcl programming language. Also see the Tclers'
Wiki located here for some example scripts.

In this document you will see some examples of Tcl commands and Tcl scripts, and the results
that are returned by theVivado Design Suite when these commands are run. The commands and
their return values appear with the following formats:

• Tcl commands and example scripts:

puts $outputDir

• Output to Tcl Console or results of Tcl commands:

./Tutorial_Created_Data/cpu_output

Navigating Content by Design Process
Xilinx® documentation is organized around a set of standard design processes to help you find
relevant content for your current development task. All Versal® ACAP design process Design
Hubs and the Design Flow Assistant materials can be found on the Xilinx.com website. This
document covers the following design processes:

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 4Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug903-vivado-using-constraints
http://www.tcl.tk
http://www.tcl.tk/man/tcl8.5/tutorial/tcltutorial.html
http://wiki.tcl.tk
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-hubs.html
https://www.xilinx.com/support/documentation-navigation/design-process/versal-decision-tree-welcome.html
https://www.xilinx.com
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=4

• Hardware, IP, and Platform Development: Creating the PL IP blocks for the hardware
platform, creating PL kernels, functional simulation, and evaluating the Vivado® timing,
resource use, and power closure. Also involves developing the hardware platform for system
integration. Topics in this document that apply to this design process include:

• Compilation and Reporting Example Scripts

• Accessing Design Objects

• Creating Custom Design Rules Checks (DRCs)

• Tcl Scripting Tips

• System Integration and Validation: Integrating and validating the system functional
performance, including timing, resource use, and power closure. Topics in this document that
apply to this design process include:

• Compilation and Reporting Example Scripts

• Accessing Design Objects

• Creating Custom Design Rules Checks (DRCs)

• Tcl Scripting Tips

A Brief Overview of Tcl
A Tcl script is a series of Tcl commands, separated by new-lines or semicolons. A Tcl command is
a string of words, separated by blanks or tabs. The Tcl interpreter breaks the command line into
words and performs command and variable substitutions as needed. The Tcl interpreter reads the
line from left to right, and evaluates each word completely before attempting to evaluate the
next. Command and variable substitutions are performed from left to right as the line is read.

A word is a string that can be a single word, or multiple words within braces, {}, or multiple words
within quotation marks, "". Semicolons, brackets, tabs, spaces, and new-lines, within quotation
marks or braces are treated as ordinary characters. However, the backslash, \, is treated as a
special character even within braces and quotation marks, as discussed below.

The first word identifies the command, and all subsequent words are passed to the command as
arguments.

set outputDir ./Tutorial_Created_Data/cpu_output

In the preceding example, the first word is the Tcl set command, which is used to assign
variables. The second and third words are passed to the set command as the variable name
(outputDir), and the variable value (./Tutorial_Created_Data/cpu_output).

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 5Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=5

When a backslash, '\', is used in a word, then the Tcl interpreter performs backslash substitution.
In most cases, this means that the character following the backslash is treated as a standard
character in the word. This is used to add quotes, braces, dollar signs, or other special characters
to a string. Refer to a Tcl/Tk reference source for more information on how the Tcl interpreter
handles the backslash character.

puts $outputDir
./Tutorial_Created_Data/cpu_output
puts \$outputDir
$outputDir

There is a also difference between the use of braces and quotation marks. No substitutions are
performed on the characters between the braces. Words, or strings, within braces are taken
verbatim, and are not evaluated for variable or command substitution by the Tcl interpreter. The
word consists of exactly the characters between the outer braces, not including the braces
themselves, as shown in the example below. Strings within quotation marks are evaluated, and
variable and command substitutions are performed as needed. Command substitution, variable
substitution, and backslash substitution are performed on the characters between quotes.

puts {The version of Vivado Design Suite is [version -short]}
The version of Vivado Design Suite is [version -short]
puts "The version of Vivado Design Suite is [version -short]"
The version of Vivado Design Suite is 2018.1

Notice in the example above, that the [version -short] command is substituted for the
returned value when enclosed within quotation marks, but is not substituted when enclosed
within braces. Keep substitution in mind when choosing to use either "" or {} to enclose a string
of words.

Variable assignment is performed using the set command. You can access a previously assigned
variable by specifying the name of the variable with a leading dollar sign, ‘$’. If a word starts with
a dollar sign the Tcl interpreter performs variable substitution, replacing the variable with the
value currently stored by the variable. The ‘$’ is a reserved character in Tcl.

set outputDir ./Tutorial_Created_Data/cpu_output
puts $outputDir
./Tutorial_Created_Data/cpu_output

Commands can also be nested inside other commands within brackets, [], which are evaluated
from left to right in a bottom-up manner. The Tcl interpreter recursively processes the strings
within the brackets as a new Tcl script. A nested command can also contain other nested
commands. The result of a nested command is passed up into the higher-level command, which is
then processed.

set listCells [lsort [get_cells]]

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 6Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=6

The preceding example assigns the sorted list of cell objects existing at the top-level of the
current design to the listCells variable. The get_cells command is executed first, the
returned objects are sorted by the lsort command, and the sorted list is assigned to the
specified variable.

However, the Vivado Design Suite handles square brackets slightly differently than standard Tcl.
Square brackets are treated as standard characters in Verilog and VHDL names (net, instances,
etc.), and usually identify one or more elements of vectors, such as buses or arrays of instances.
In the Vivado Design Suite tools the square brackets are not evaluated in a bottom-up manner
when they are expected to be part of a netlist object name.

The following three commands are equivalent:

1.) set list_of_pins [get_pins transformLoop[0].ct/xOutReg_reg/CARRYOUT[*]]
2.) set list_of_pins [get_pins {transformLoop[0].ct/xOutReg_reg/
CARRYOUT[*] }]
3.) set list_of_pins [get_pins transformLoop\[0\].ct/xOutReg_reg/CARRYOUT\[*
\]]

In line 1, the outer pair of brackets indicate a nested command, [get_pins], as is standard in
Tcl. However, the subsequent square brackets are interpreted by the Vivado tools as part of the
specified object name transformLoop[0]. This is handled automatically by the Vivado Design
Suite, but is limited to certain characters. These characters must be in one of the following forms,
or the brackets will be interpreted as they would be in normal Tcl syntax:

• star: [*] - The wildcard indicates any of a number of bits or instances.

• integer: [12] - The integer indicates a specific bit or instance.

In line 2 the use of the braces, {}, will prevent command substitution of the string inside the
braces. In this case the square brackets would be evaluated as part of the object name,
transformLoop[0].

In line 3, the backslash indicates that the bracket should be interpreted as a standard character
rather than a special character, and this will prevent nested command substitution.

While lines 2 and 3 prevent the square brackets from being misinterpreted, those lines require
you to manually apply the braces or backslash as needed by standard Tcl. Line 1 shows how the
Vivado Design Suite automatically handles this for you.

Finally, to add comments to a Tcl script, simply start a new-line with the number sign, or hash
character, ‘#’. Characters that follow a hash character are ignored, up to the next new-line. To add
a comment to the end of a line, simply end the command with a semicolon, ‘;’, and then begin the
comment with a hash character as shown below:

This is a comment
puts "This is a command"; # followed by a comment

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 7Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=7

Getting Help
You can get help directly from the Tcl console. Every Vivado command supports the -help
command line argument that can be used anywhere in the line.

For example:

Vivado% create_clock -help
Vivado% create_clock -name CLK1 -period 10 -help

In addition, there is a help command that provides additional information. Providing a command
name to the help command (that is, help <command>) reports the same help information as
<command> -help:

Vivado% help create_clock

The help command can also just return a short description of the arguments using the -args
option:

Vivado% help create_clock -args
create_clock
Description:
Create a clock object
Syntax:
create_clock -period <arg> [-name <arg>] [-waveform <args>] [-add] [-quiet]
[-verbose] [<objects>]
Returns:
new clock object
Usage:
 Name Description

 -period Clock period: Value > 0
 [-name] Clock name
 [-waveform] Clock edge specification
 [-add] Add to the existing clock in source_objects
 [-quiet] Ignore command errors
 [-verbose] Suspend message limits during command execution
 [<objects>] List of clock source ports, pins or nets

A short summary of the syntax of a command is also available with the -syntax option:

Vivado% help create_clock -syntax
create_clock
Syntax:
create_clock -period <arg> [-name <arg>] [-waveform <args>] [-add]
[-quiet][-verbose] [<objects>]

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 8Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=8

In addition to providing help for the specific commands, the help command can also provide
information on categories of commands or classes of objects. A list of categories can be obtained
by executing the help command without any argument or option. A non-exhaustive list of
categories is:

Vivado% help
ChipScope
DRC
FileIO
Floorplan
GUIControl
IPFlow
Object
PinPlanning
Power
Project
PropertyAndParameter
Report
SDC
Simulation
TclBuiltIn
Timing
ToolLaunch
Tools
XDC

The list of commands available under each category can be also reported with the -category
option. For example, the following command reports all the commands under the Tools category:

Vivado% help -category tools
Topic Description
link_design Open a netlist design
list_features List available features.
load_features Load Tcl commands for a specified feature.
opt_design Optimize the current netlist. This will perform the retarget,
 propconst, and sweep optimizations by default.
phys_opt_design Optimize the current placed netlist.
place_design Automatically place ports and leaf-level instances
route_design Route the current design
synth_design Synthesize a design using Vivado Synthesis and open that
design

Platform Specific Tcl Behaviors
In some rare cases, Tcl can behave differently depending on the platform where it is being used
(32-bit or 64-bit). This is not related to Vivado but to Tcl.

For example, if you have a list of large integers that you want to sort, you might use the following
command:

 vivado% lsort $list -integer

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 9Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=9

This command behaves differently when the script is running on a 32-bit machine than on a 64-
bit machine. The reason is that integers are coded differently on a 32-bit platform versus 64-bit
platform:

win32, win64, lnx32: sizeof(int) is 4bytes
lnx64: sizeof(int) is 8bytes

A workaround for that particular example would be to use the command line option -command
of lsort and provide a custom proc to do the sorting.

Compilation and Reporting Example Scripts
Compilation with a Non-Project Flow
The following is an example Tcl script that defines a Non-Project design flow.

The example script uses a custom command reportCriticalPaths. This is an illustration on
how the Vivado Design Suite can be augmented with custom commands and procedures. The
content of reportCriticalPaths is provided and explained in the section Defining Tcl
Procedures.

STEP#1: define the output directory area.
#
set outputDir ./Tutorial_Created_Data/cpu_output
file mkdir $outputDir
#
STEP#2: setup design sources and constraints
#
read_vhdl -library bftLib [glob ./Sources/hdl/bftLib/*.vhdl]
read_vhdl ./Sources/hdl/bft.vhdl
read_verilog [glob ./Sources/hdl/*.v]
read_verilog [glob ./Sources/hdl/mgt/*.v]
read_verilog [glob ./Sources/hdl/or1200/*.v]
read_verilog [glob ./Sources/hdl/usbf/*.v]
read_verilog [glob ./Sources/hdl/wb_conmax/*.v]
read_xdc ./Sources/top_full.xdc
#
STEP#3: run synthesis, write design checkpoint, report timing,
and utilization estimates
#
synth_design -top top -part xc7k70tfbg676-2
write_checkpoint -force $outputDir/post_synth.dcp
report_timing_summary -file $outputDir/post_synth_timing_summary.rpt
report_utilization -file $outputDir/post_synth_util.rpt
#
Run custom script to report critical timing paths
reportCriticalPaths $outputDir/post_synth_critpath_report.csv
#
STEP#4: run logic optimization, placement and physical logic
optimization,
write design checkpoint, report utilization and timing estimates
#

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 10Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=10

opt_design
reportCriticalPaths $outputDir/post_opt_critpath_report.csv
place_design
report_clock_utilization -file $outputDir/clock_util.rpt
#
Optionally run optimization if there are timing violations after placement
if {[get_property SLACK [get_timing_paths -max_paths 1 -nworst 1 -setup]] <
0} {
 puts "Found setup timing violations => running physical optimization"
 phys_opt_design
}
write_checkpoint -force $outputDir/post_place.dcp
report_utilization -file $outputDir/post_place_util.rpt
report_timing_summary -file $outputDir/post_place_timing_summary.rpt
#
STEP#5: run the router, write the post-route design checkpoint, report
the routing
status, report timing, power, and DRC, and finally save the Verilog
netlist.
#
route_design
write_checkpoint -force $outputDir/post_route.dcp
report_route_status -file $outputDir/post_route_status.rpt
report_timing_summary -file $outputDir/post_route_timing_summary.rpt
report_power -file $outputDir/post_route_power.rpt
report_drc -file $outputDir/post_imp_drc.rpt
write_verilog -force $outputDir/cpu_impl_netlist.v -mode timesim -sdf_anno
true
#
STEP#6: generate a bitstream

write_bitstream -force $outputDir/cpu.bit

Details of the Sample Script

The key steps of the preceding script can be broken down as follows:

1. Defines a variable, $outputDir, that points to an output directory and also physically
creates the directory. The $outputDir variable is referenced as needed at other points in
the script.

2. Reads the VHDL and Verilog files that contain the design description, and the XDC file that
contains the physical and/or timing constraints for the design. You can also read synthesized
netlists (EDIF or NGC) using the read_edif command.

The Vivado Design Suite uses design constraints to define requirements for both the physical
and timing characteristics of the design. The read_xdc command reads an XDC constraints
file which will be used during synthesis and implementation.

IMPORTANT! The Vivado Design Suite does not support the UCF format. For information on
migrating UCF constraints to XDC commands refer to the ISE to Vivado Design Suite Migration Guide
(UG911) for more information.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 11Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2022.1;d=ug911-vivado-migration.pdf
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=11

The read_* Tcl commands are designed for use in Non-Project mode, as it allows a file on
the disk to be read by the Vivado Design Suite to build an in-memory design database,
without copying the file or creating a dependency on the file in any way, as it would in
Project mode. All actions taken in the Non-Project mode are directed at the in-memory
database within the Vivado tools. The advantages of this approach make the Non-Project
mode extremely flexible with regard to the design. However, a limitation of the Non-Project
mode is that you must monitor any changes to the source design files, and update the design
as needed. For more information on running the Vivado Design Suite using either Project
mode or Non-Project mode, refer to the Vivado Design Suite User Guide: Design Flows Overview
(UG892).

3. Synthesizes the design on the specified target device.

This step compiles the HDL design files, applies the timing constraints located in the XDC file,
and maps the logic onto Xilinx primitives to create a design database in memory. The in-
memory design resides in the Vivado tools, whether running in batch mode, Tcl shell mode
for interactive Tcl commands, or in the Vivado Integrated Design Environment (IDE) for
interaction with the design data in a graphical form.

Once synthesis completes, a checkpoint is saved for reference. At this point the design is an
unplaced synthesized netlist with timing and physical constraints. Various reports like timing
and utilization can provide a useful resource to better understand the challenges of the
design.

This sample script uses a custom command, reportCriticalPaths, to report the
TNS/WNS/Violators into a CSV file. This provides the ability for you to quickly identify which
paths are critical.

Any additional XDC file read in after synthesis by the read_xdc or source commands is
used during the implementation steps only. They will be stored in any subsequent design
checkpoints, along with the netlist.

4. Performs pre-placement logic optimization, in preparation for placement and routing. The
objective of optimization is to simplify the logic design before committing to physical
resources on the target part. Optimization is followed by timing-driven placement with the
Vivado placer.

After each of those steps, the reportCriticalPaths command is run to generate a new
CSV file. Having multiple CSV files from different stages of the design lets you create a
custom timing summary spreadsheet that can help visualizing how timing improves during
each implementation step.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 12Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug892-vivado-design-flows-overview
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=12

Once the placement is done, the script uses the get_timing_paths command to examine
the SLACK property of the worst timing path in the placed design. While the
report_timing command returns a detailed text report of the timing path with the worst
slack, the get_timing_paths command returns the same timing path as a Tcl object with
properties that correspond to the main timing characteristics of the path. The SLACK
property returns the slack of the specified timing path, or worst path in this case. If the slack
is negative then the script runs physical optimization to resolve the placement timing
violations whenever possible.

At the end of Step 4, another checkpoint is saved and the device utilization is reported along
with a timing summary of the design. This will let you compare pre-routed and post-routed
timing to assess the impact that routing has on the design timing.

5. The Vivado router performs timing-driven routing, and a checkpoint is saved for reference.
Now that the in-memory design is routed, additional reports provide critical information
regarding power consumption, design rule violations, and final timing. You can output reports
to files, for later review, or you can direct the reports to the Vivado IDE for more interactive
examination. A Verilog netlist is exported, for use in timing simulation.

6. Writes a bitstream to test and program the design onto the Xilinx FPGA.

Compilation with a Project Flow
The following script illustrates a Project flow that synthesizes the design and performs a
complete implementation, including bitstream generation. It is based on the CPU example design
provided in the Vivado installation tree.

#
 # STEP#1: define the output directory area.
 #
 set outputDir ./Tutorial_Created_Data/cpu_project
 file mkdir $outputDir
 create_project project_cpu_project ./Tutorial_Created_Data/
cpu_project \
 -part xc7k70tfbg676-2 -force
 #
 # STEP#2: setup design sources and constraints
 #
 add_files -fileset sim_1 ./Sources/hdl/cpu_tb.v
 add_files [glob ./Sources/hdl/bftLib/*.vhdl]
 add_files ./Sources/hdl/bft.vhdl
 add_files [glob ./Sources/hdl/*.v]
 add_files [glob ./Sources/hdl/mgt/*.v]
 add_files [glob ./Sources/hdl/or1200/*.v]
 add_files [glob ./Sources/hdl/usbf/*.v]
 add_files [glob ./Sources/hdl/wb_conmax/*.v]
 add_files -fileset constrs_1 ./Sources/top_full.xdc
 set_property library bftLib [get_files [glob ./Sources/hdl/bftLib/
*.vhdl]]
 #
 # Physically import the files under project_cpu.srcs/sources_1/
imports directory
 import_files -force -norecurse
 #

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 13Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=13

 # Physically import bft_full.xdc under project_cpu.srcs/constrs_1/
imports directory
 import_files -fileset constrs_1 -force -norecurse ./Sources/
top_full.xdc
 # Update compile order for the fileset 'sources_1'
 set_property top top [current_fileset]
 update_compile_order -fileset sources_1
 update_compile_order -fileset sim_1
 #
 # STEP#3: run synthesis and the default utilization report.
 #
 launch_runs synth_1
 wait_on_run synth_1
 #
 # STEP#4: run logic optimization, placement, physical logic
optimization, route and
 # bitstream generation. Generates design checkpoints, utilization
and timing
 # reports, plus custom reports.
 set_property STEPS.PHYS_OPT_DESIGN.IS_ENABLED true [get_runs impl_1]
 set_property STEPS.OPT_DESIGN.TCL.PRE [pwd]/pre_opt_design.tcl
[get_runs impl_1]
 set_property STEPS.OPT_DESIGN.TCL.POST [pwd]/post_opt_design.tcl
[get_runs impl_1]
 set_property STEPS.PLACE_DESIGN.TCL.POST [pwd]/
post_place_design.tcl [get_runs impl_1]
 set_property STEPS.PHYS_OPT_DESIGN.TCL.POST [pwd]/
post_phys_opt_design.tcl [get_runs impl_1]
 set_property STEPS.ROUTE_DESIGN.TCL.POST [pwd]/
post_route_design.tcl [get_runs impl_1]
 launch_runs impl_1 -to_step write_bitstream
 wait_on_run impl_1
 puts "Implementation done!"

Details of the Sample Script

1. The project is created with the create_project command. The project directory and the
target device are specified. The project directory is automatically created if it does not
already exist.

In this example, the output directory where the various reports are saved is the same as the
project directory.

2. All the files that are used in a project need to be explicitly declared and added to the project.
This is done with the add_files command. When a file is added to the project, it is added
to a specific fileset. A fileset is a container that groups files together for a purpose. In this
example script, most of the files are added to the default fileset (sources_1). Only the
Verilog test bench cpu_tb.v is added to the default simulation fileset sim_1.

The files are also copied inside the project directories with the import_files command. By
doing this, the project points to the local copy of the source files and does not track the
original source files anymore.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 14Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=14

3. The design is synthesized by launching a synthesis run in the background (launch_run
synth_1). The Vivado IDE automatically generates all the necessary scripts to run synthesis
in a separate Vivado session. Because synthesis runs in a different process, it is necessary to
wait for its completion before continuing the current script. This is done by using the
wait_on_run command.

Once the synthesis run is completed, the results can be loaded in memory with the
open_run synth_1 command. A checkpoint without constraints is saved in the project
directories, where synthesis was run. In this example, it can be found under:

./Tutorial_Created_Data/cpu_project/project_cpu.runs/synth_1/top.dcp

Note: The names synth_1 and impl_1 are default names for the synthesis and implementation runs.
Additional runs can be created with create_run command.

4. The implementation is done by using the launch_run command. The complete P&R flow
from pre-place optimization to writing the bitstream can be performed in a single command.
In this example script, the implementation is done up to the bitstream generation
(launch_run impl_1 -to_step write_bitstream).

The optional step phys_opt_design is enabled in the script through the property
STEPS.PHYS_OPT_DESIGN.IS_ENABLED. Unlike with the Non-Project flow which allows
dynamically calling the implementation commands based on conditions defined by the user, the
run of a project flow must be configured statically before it is launched. This is why, in this
example, the physical logic optimization step is enabled without checking the timing slack value
after placement, unlike in the Compilation with a Non-Project flow example.

The various reports are generated before or after each implementation step by using the run Tcl
hook properties STEPS.<STEPNAME>.TCL.PRE and STEPS.<STEPNAME>.TCL.POST. These
properties allow the user to specify where a Tcl script is executed in the flow when using the run
infrastructure. See Defining Tcl Hook Scripts for additional information.

Because the implementation run is executed in a separate Vivado session, all the Tcl variables
and procs need to be initialized in that session in order to be used by the scripts. This can be
done in several ways:

• Method 1: Define the Tcl variables and procs in your Vivado_init.tcl (see Initializing Tcl
Scripts). This is sticky to all your Vivado projects and sessions.

• Method 2: Add a Tcl script which contains the variables and procs to the constraints set used
by the run. It will always be sourced as part of your constraints when opening the design in
memory.

• Method 3: Set STEPS.OPT_DESIGN.TCL.PRE to a Tcl script which contains the variables
and proc. This script will only be sourced if the OPT_DESIGN step is enabled, which is true by
default.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 15Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=15

The current example uses the Method 3. The Tcl scripts are associated with the implementation
steps as follows:

set_property STEPS.OPT_DESIGN.TCL.PRE [pwd]/pre_opt_design.tcl
[get_runs impl_1]
set_property STEPS.OPT_DESIGN.TCL.POST [pwd]/post_opt_design.tcl
[get_runs impl_1]
set_property STEPS.PLACE_DESIGN.TCL.POST [pwd]/post_place_design.tcl
[get_runs impl_1]
set_property STEPS.PHYS_OPT_DESIGN.TCL.POST [pwd]/post_phys_opt_design.tcl
[get_runs impl_1]
set_property STEPS.ROUTE_DESIGN.TCL.POST [pwd]/post_route_design.tcl
[get_runs impl_1]

The absolute Tcl script path must be specified because the implementation run is executed in a
sub-directory of the project tree, which is different from the one where the full compilation Tcl
script is executed.

• pre_opt_design.tcl

############## pre_opt_design.tcl ##################
set outputDir [file dirname [info script]]/Tutorial_Created_Data/
cpu_project
source [file dirname [info script]]/reportCriticalPaths.tcl
#
report_timing_summary -file $outputDir/post_synth_timing_summary.rpt
report_utilization -file $outputDir/post_synth_util.rpt
reportCriticalPaths $outputDir/post_synth_critpath_report.csv

The two first lines correspond to the initialization of the variable and proc used by several
scripts later in the implementation run. The next three lines run some utilization and timing
reports. It is generally recommended to run timing analysis at the beginning of implementation
to validate the timing constraints used during place and route, and ensure there is no large
violation. The reportCriticalPaths report provides more information on the worst paths
of the design. This Tcl proc is described further in Defining Tcl Procedures.

• post_opt_design.tcl

############## post_opt_design.tcl ##################
Run custom script to report critical timing paths
reportCriticalPaths $outputDir/post_opt_critpath_report.csv

This script does not need to define the outputDir variable and reportCriticalPaths
proc because they are already defined in pre_opt_design.tcl which is sourced earlier in
the run in the same Vivado session.

It is recommended to also run utilization and timing analysis after opt_design.

• post_place_design.tcl

############## post_place_design.tcl ##################
report_clock_utilization -file $outputDir/clock_util.rpt

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 16Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=16

After placement, you can review the utilization of the clock resources and where they are
located in the device. It is recommended to run timing analysis to identify large timing
violations that cannot be resolved later in the flow.

• post_phys_opt_design.tcl

############## post_phys_opt_design.tcl ##################
report_utilization -file $outputDir/post_phys_opt_util.rpt
report_timing_summary -file $outputDir/post_phys_opt_timing_summary.rpt

Like after placement, it is important to review the timing report at this point of the flow.

• post_route_design.tcl

############## post_route_design.tcl ##################
report_route_status -file $outputDir/post_route_status.rpt
report_timing_summary -file $outputDir/post_route_timing_summary.rpt
report_power -file $outputDir/post_route_power.rpt
report_drc -file $outputDir/post_imp_drc.rpt
write_verilog -force $outputDir/cpu_impl_netlist.v -mode timesim -
sdf_anno true

After route, the timing analysis uses actual routed net delays and must be reviewed for timing
sign-off. The route status report summarizes the number of unresolved routing issues. If there
are any, the DRC report often helps identify what the routing issues are.

Note: When running an implementation step inside the hook script, you can use the Tcl variable
ACTIVE_STEP to, for instance, make the report file names unique. The variable ACTIVE_STEP is
automatically updated by Vivado when using the run infrastructure. See Sharing Hook Scripts Between
Steps for more information.

Note: Most of the Tcl reports generated during post-route above are also automatically created by the
run infrastructure. Similarly, a design checkpoint is generated after each step of the flow, so there is
usually no need to call the write_checkpoint command in your scripts when using a project flow.
You can find all the checkpoints and default reports in the implementation run directory:

./Tutorial_Created_Data/cpu_project/project_cpu.runs/impl_1/
 top_opt.dcp
 top_placed.dcp
 top_physopt.dcp
 top_routed.dcp
 top_clock_utilization_placed.rpt
 top_control_sets_placed.rpt
 top_utilization_placed.rpt
 top_io_placed.rpt
 top_drc_routed.rpt
 top_power_routed.rpt
 top_route_status.rpt
 top_timing_summary_routed.rpt

After the implementation run is complete, the implemented design can be loaded in memory
with the open_run impl_1 command.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 17Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=17

Loading and Running Tcl Scripts
The Vivado Design Suite offers several different ways to load and run a Tcl script during a design
session. You can have script files loaded automatically when the tool is launched, source scripts
from the Tcl command line, or add them to the menus in the Vivado IDE.

Initializing Tcl Scripts
The Vivado Design Suite can automatically load Tcl scripts defined in Vivado_init.tcl file.
This approach is useful when you have written Tcl procedures that define new commands that
you want to make available in all your Vivado sessions.

Note: Starting with 2017.1, the startup script for the Vivado Design Suite has been renamed
Vivado_init.tcl. In the earlier versions it was called init.tcl. If Vivado_init.tcl does not exist
but init.tcl is present, the Vivado tools source the init.tcl and issue a deprecation message.

When you start the Vivado tools, it looks for a Tcl initialization script in several locations with the
following precedence:

1. In the software installation: <installdir>/Vivado/<VivadoVersion>/scripts/
Vivado_init.tcl

Where <installdir> is the installation directory where the Vivado Design Suite is
installed.

2. In the local user directory (Vivado tools version dependent):

• For Windows 7: %APPDATA%/Xilinx/Vivado/<VivadoVersion>/
Vivado_init.tcl

For example: %APPDATA%/Xilinx/Vivado/2017.1/Vivado_init.tcl

• For Linux: $HOME/.Xilinx/Vivado/<VivadoVersion>/Vivado_init.tcl

For example: $HOME/.Xilinx/Vivado/2017.1/Vivado_init.tcl

3. In the local user directory (Vivado tools version independent):

• For Windows 7: %APPDATA%/Xilinx/Vivado/Vivado_init.tcl

• For Linux: $HOME/.Xilinx/Vivado/Vivado_init.tcl

If Vivado_init.tcl exists in several locations, the Vivado tool sources the file following the
precedence explained above.

The Vivado_init.tcl file in the installation directory allows a company or design group to
support a common initialization script for all users. Anyone starting the Vivado tools from that
software installation sources the enterprise Vivado_init.tcl script.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 18Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=18

The Vivado_init.tcl file in the home directory allows each user to specify additional
commands, or to override commands from the software installation to meet their specific design
requirements.

The Vivado_init.tcl file is a standard Tcl script file that can contain any valid Tcl command
supported by the Vivado tools. You can even source another Tcl script file from within
Vivado_init.tcl by adding the source command.

Note: Vivado_init.tcl follows the naming convention <program>_init.tcl. Other supported
program names are xsim and vivado_lab. For instance, Vivado simulator looks for xsim_init.tcl at
startup.

Sourcing Tcl Scripts
The source command lets you manually load Tcl script files into the Vivado tools:

source <filename>

Where <filename> specifies both the name of the file, as well as the relative or absolute path
to the file. If no path is specified as part of the file name, then the Vivado tools look for the file in
the working directory, or the directory from which the Vivado Design Suite was launched.

Within the Vivado IDE you can also source a Tcl script from the Tools → Run Tcl Script menu
command.

By default, the source command echoes each line of the file to the Tcl console. This can be
prevented by using the -notrace option, which is specific to the Vivado Tcl interpreter:

source <filename> -notrace

Executing a Tcl Script at Startup
To specify a script to be executed at startup on the Vivado tools command line, use the -source
option:

vivado -source myscript.tcl

The following is equivalent to manually sourcing the script after first starting Vivado tools:

source myscript.tcl

A checkpoint can also be specified on the command line along with a Tcl script:

vivado design.dcp -source myscript.tcl

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 19Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=19

The above command line is equivalent to manually opening the checkpoint and then sourcing the
script:

open_checkpoint design.dcp
source myscript.tcl

The combination of a checkpoint and script provides the flexibility to write a Tcl script
independent of any design and then easily associate a checkpoint with the script:

vivado design1.dcp -source myscript.tcl
vivado design2.dcp -source myscript.tcl

Using Tcl Scripts in a Constraints Set
Tcl scripts can be added to project constraint sets like any regular XDC file, except that the XDC
files are managed by the tool, and not Tcl scripts. Any constraint defined by a Tcl script and edited
by the tool cannot be saved back to the Tcl script automatically. If you need to save your edits,
you must export all the constraints in memory to a file and use this file to update your script
manually. When opening a design in memory (open_run), the Tcl scripts are sourced after the
XDC files. In a Non-Project flow, this is equivalent to explicitly sourcing the Tcl scripts after
loading the XDC files with read_xdc. For more information on using XDC files and Tcl scripts in
a constraints set, see the Vivado Design Suite User Guide: Using Constraints (UG903).

XDC Constraints: read_xdc versus source
When applying constraints to the design, the commands read_xdc and source differ in
behavior. The constraints applied through the command source are always saved inside the
checkpoint after the constraints applied through the command read_xdc. To preserve the XDC
constraints inside the checkpoint in the same order that they are applied to the design, use
read_xdc -unmanaged instead of source.

For more information, see the Vivado Design Suite User Guide: Using Constraints (UG903).

Defining Tcl Hook Scripts
In a Non-Project flow you have the ability to source a Tcl script at any point in the flow, such as
before or after running the synth_design command. You can also do this in a project-based
flow, using the Vivado IDE, or by using the set_property command to set a property on either
a synthesis or implementation run. Tcl hook scripts allow you to run custom Tcl scripts prior to
(tcl.pre) and after (tcl.post) synthesis and implementation design runs, or any of the
implementation steps.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 20Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug903-vivado-using-constraints
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug903-vivado-using-constraints
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=20

Whenever you launch a synthesis or implementation run, the Vivado tools use a predefined Tcl
script to process a standard design flow based on the selected strategy. Tcl hook scripts let you
customize the standard flow, with pre-processors or post-processors. Being able to add Tcl script
processing anywhere in a run can be useful. Every step in the design flow has a pre-hook and
post-hook capability. Common uses are:

• Custom reports: timing, power, utilization, or any user-defined Tcl report.

• Modifying the timing constraints for portions of the flow only.

• Modifications to netlist, constraint, or device programming.

In the GUI you can specify the Tcl hook scripts to be sourced by using the Change Run Settings
command for the design run. Right-click a run in the Design Runs window and select the Change
Run Settings from the pop-up menu to open the Design Run Settings dialog box. The tcl.pre
and tcl.post options can be used to specify a Tcl hook script.

The Vivado IDE sets a property on the synthesis or implementation run to specify the tcl.pre
or tcl.post script to apply before or after the run, as shown in Defining Tcl Hook Scripts. You
can also set this property directly on a synthesis or implementation run, either in the Tcl Console
or as part of a Tcl script.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 21Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=21

Figure 1: Defining Pre and Post Run Tcl Scripts

The properties to set on a synthesis run are:

STEPS.SYNTH_DESIGN.TCL.PRE
STEPS.SYNTH_DESIGN.TCL.POST

For instance, set the following property to have the report.tcl script launched before
synthesis is complete:

set_property STEPS.SYNTH_DESIGN.TCL.PRE {C:/Data/report.tcl} [get_runs
synth_1]

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 22Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=22

For an implementation run you can define Tcl scripts before and after each step of the
implementation process: Opt Design, Power Opt Design, Place Design, Post-Place Power Opt
Design, Phys Opt Design, Route Design and Bitstream generation. The properties for each of
these are:

STEPS.OPT_DESIGN.TCL.PRE
STEPS.OPT_DESIGN.TCL.POST
STEPS.POWER_OPT_DESIGN.TCL.PRE
STEPS.POWER_OPT_DESIGN.TCL.POST
STEPS.PLACE_DESIGN.TCL.PRE
STEPS.PLACE_DESIGN.TCL.POST
STEPS.POST_PLACE_POWER_OPT_DESIGN.TCL.PRE
STEPS.POST_PLACE_POWER_OPT_DESIGN.TCL.POST
STEPS.PHYS_OPT_DESIGN.TCL.PRE
STEPS.PHYS_OPT_DESIGN.TCL.POST
STEPS.ROUTE_DESIGN.TCL.PRE
STEPS.ROUTE_DESIGN.TCL.POST
STEPS.WRITE_BITSTREAM.TCL.PRE
STEPS.WRITE_BITSTREAM.TCL.POST

IMPORTANT! Relative paths within the tcl.pre  and tcl.post  scripts are relative to the appropriate
run directory of the project they are applied to: <project>/<project.runs>/<run_name>. You
can use the DIRECTORY property of the current project or current run to define the relative paths in your
Tcl hook scripts:

get_property DIRECTORY [current_project]
get_property DIRECTORY [current_run]

Sharing Hook Scripts Between Steps
When the hook script is step agnostic and only generates a set of reports for an implementation
step, it is not efficient to duplicate the script content for each step and just change, for instance,
the report file name to match the implementation step. A better way to proceed is to share the
same hook script for all the implementation steps and use the Tcl variable ACTIVE_STEP to build
the report filename. This ensures a different file name for each step.

In Project mode, the Vivado IDE automatically updates the Tcl variable ACTIVE_STEP when
submitting a run through the run infrastructure to match the implementation step being run.

Note: The Tcl variable ACTIVE_STEP is only available in Project mode while using the run infrastructure.

The following is an example of a hook script using the ACTIVE_STEP variable:

set step $ACTIVE_STEP
report_timing_summary -file tim_summary_${step}.rpt
if {$step == {route_design}} {
 report_route_status -file route_status.rpt
}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 23Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=23

Customizing the GUI
You can use the Tools → Custom Commands → Customize Commands menu item to add system
or user-defined Tcl commands to the Vivado IDE main menu and toolbar menu. For more
information on adding custom commands to the menu, see this link in the Vivado Design Suite
User Guide: Using the Vivado IDE (UG893).

Writing a Tcl Script
When writing a Tcl script, the emphasis should be, whenever possible, on providing code that can
enhance the user experience. This means writing scripts that provide the same type of user
experience as the embedded Vivado commands such as providing embedded Help and
interactive command line argument. It is also critical to consider all the corner cases that could
happen, whether Vivado objects are empty or not after using the get_* commands and so forth.
It is also common when writing Tcl code, to create some lower-level procedures that are used in
the code. To avoid name collision of procedures and global variables, it is recommended that you
develop the code within its own namespace so that name collisions are minimized.

Defining Tcl Procedures
Because the Vivado Design Suite provides a full Tcl interpreter built into the tool, creating new
custom commands and procedures is a simple task. You can write Tcl scripts that can be loaded
and run from the Vivado IDE, or you can write procedures, to act like new Tcl commands, taking
arguments, checking for errors, and returning results.

A Tcl procedure is defined with the proc command which takes three arguments: the procedure
name, the list of arguments, and the body of code to be executed. The following code provides a
simple example of a procedure definition:

proc helloProc { arg1 } {
 # This is a comment inside the body of the procedure
 puts "Hello World! Arg1 is $arg1"
}

TIP: Although the curly brackets are optional for the argument definition of this procedure, since helloProc
has only one argument, it makes the procedure definition easier to read by enclosing the arguments in
braces. The braces are required when the procedure accepts multiple arguments.

A procedure usually has predefined arguments. Each of them can optionally have a default value.
When an argument has a default value, it does not need to be specified when calling the
procedure if all the mandatory preceding arguments are specified. A procedure returns an empty
string unless the return command is used to return a different value.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 24Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2022.1;d=ug893-vivado-ide.pdf;a=xAddingCustomMenuCommands
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug893-vivado-ide
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=24

The following example defines a procedure, reportWorstViolations, with three arguments:

proc reportWorstViolations { nbrPaths corner delayType } {
 report_timing -max_paths $nbrPaths -corner $corner -delay_type $delayType
-nworst 1
}

When running the procedure, all the arguments must be specified as shown:

%> reportWorstViolations 2 Slow max
%> reportWorstViolations 10 Fast min

The next example is a different form of the same procedure, where the last two of the three
arguments have a default value. The default value for corner is Slow, and the default value for
delayType is Max. With default values specified in the definition of the procedure, the corner
and delayType arguments are optional when calling the procedure.

proc reportWorstViolations { nbrPaths { corner Slow } { delayType Max } } {
 report_timing -max_paths $nbrPaths -corner $corner -delay_type $delayType
-nworst 1
}

When running this procedure, all of the following calls of the command are valid:

%> reportWorstViolations 2
%> reportWorstViolations 10 Fast
%> reportWorstViolations 10 Slow Min

The following example is an illustration of a procedure that has one mandatory argument,
nbrPath, but that can also accept any number of additional arguments. This uses the Tcl
keyword args in the list of arguments when defining the procedure. The args keyword is a Tcl
list that can have any number of elements, including none.

proc reportWorstViolations { nbrPaths args } {
 eval report_timing -max_paths $nbrPaths $args
}

When executing a Tcl command, you can use variable substitution to replace some of the
command line arguments accepted or required by the Tcl command. In this case, you must use
the Tcl eval command to evaluate the command line with the Tcl variable as part of the
command. In the preceding example, the variable list of arguments ($args) is passed to the
encapsulated report_timing command as a variable, and so requires the use of the eval
command.

When running this procedure, any of the following forms of the command will work:

%> reportWorstViolations 2
%> reportWorstViolations 1 -to [get_ports]
%> reportWorstViolations 10 -delay_type min_max -nworst 2

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 25Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=25

In the first example, the number 2 is passed to the $nbrPaths argument, and applied to -
max_paths. In the second and third examples, the numbers 1 and 10 respectively are applied to
-max_paths, and all the subsequent characters are assigned to $args.

The following example provides the procedure definition for the reportCriticalPaths
command that was previously used in the Non-Project mode example script. The procedure takes
a single argument, $filename, and has been commented to explain each section:

#--
reportCriticalPaths
#--
This function generates a CSV file that provides a summary of the first
50 violations for both Setup and Hold analysis. So a maximum number of
100 paths are reported.
#--
proc reportCriticalPaths { fileName } {
 # Open the specified output file in write mode
 set FH [open $fileName w]
 # Write the current date and CSV format to a file header
 puts $FH "#\n# File created on [clock format [clock seconds]]\n#\n"
 puts $FH "Startpoint,Endpoint,DelayType,Slack,#Levels,#LUTs"
 # Iterate through both Min and Max delay types
 foreach delayType {max min} {
 # Collect details from the 50 worst timing paths for the current
analysis
 # (max = setup/recovery, min = hold/removal)
 # The $path variable contains a Timing Path object.
 foreach path [get_timing_paths -delay_type $delayType -max_paths 50 -
nworst 1] {
 # Get the LUT cells of the timing paths
 set luts [get_cells -filter {REF_NAME =~ LUT*} -of_object $path]
 # Get the startpoint of the Timing Path object
 set startpoint [get_property STARTPOINT_PIN $path]
 # Get the endpoint of the Timing Path object
 set endpoint [get_property ENDPOINT_PIN $path]
 # Get the slack on the Timing Path object
 set slack [get_property SLACK $path]
 # Get the number of logic levels between startpoint and endpoint
 set levels [get_property LOGIC_LEVELS $path]
 # Save the collected path details to the CSV file
 puts $FH "$startpoint,$endpoint,$delayType,$slack,$levels,[llength
$luts]"
 }
 }
 # Close the output file
 close $FH
 puts "CSV file $fileName has been created.\n"
 return 0
}; # End PROC

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 26Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=26

Parsing Command Line Arguments
It can be useful and sometimes necessary to write procedures that use external parameters or
arguments as they can broaden the spectrum of usage of the procedure without having to write
too much redundant code. A single procedure that can handle multiple contexts is easier to use
and maintain that multiple procedures that cover the same range of contexts with duplicated
code.

This is especially useful when the procedure is being used interactively. It is a lot friendlier for the
user to be able to specify some command line options like with any Vivado commands.

Tcl provides an easy way to do this through the args variable. The keyword args used inside
the list of arguments of a procedure can match any number of elements, including none. The
args variable is a regular Tcl list that can be processed and analyzed like any Tcl list.

There are multiple techniques to parse the command line arguments, and the example code
below shows just one of them:

01 proc lshift listVar {
02 upvar 1 $listVar L
03 set r [lindex $L 0]
04 set L [lreplace $L [set L 0] 0]
05 return $r
06 }
07
08
09 proc myproc { args } {
10
11 #---
12 # Process command line arguments
13 #---
14 set error 0
15 set help 0
16 set verbose 0
17 set ports {}
18 # if {[llength $args] == 0} { incr help }; # Uncomment if necessary
19 while {[llength $args]} {
20 set flag [lshift args]
21 switch -exact -- $flag {
22 -p -
23 -ports {
24 set ports [lshift args]
25 }
26 -v -
27 -verbose {
28 set verbose 1
29 }
30 -h -
31 -help {
32 incr help
33 }
34 default {
35 if {[string match "-*" $flag]} {
36 puts " ERROR - option '$flag' is not a valid option."
37 incr error
38 } else {
39 puts "ERROR - option '$flag' is not a valid option."

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 27Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=27

40 incr error
41 }
42 }
43 }
44 }
45
46 if {$help} {
47 set callerflag [lindex [info level [expr [info level] -1]] 0]
48 # <-- HELP
49 puts [format {
50 Usage: %s
51 [-ports|-p <listOfPorts>]
52 [-verbose|-v]
53 [-help|-h]
54
55 Description: xxxxxxxxxxxxxxxxxxx.
56 xxxxxxxxxxxxxxxxxxx.
57
58 Example:
59 %s -port xxxxxxxxxxxxxxx
60
61 } $callerflag $callerflag]
62 # HELP -->
63 return -code ok {}
64 }
65
66 # Check validity of arguments. Increment $error to generate an error
67
68 if {$error} {
69 return -code error {Oops, something is not correct}
70 }
71
72 # Do something
73
74 return -code ok {}
75 }

Explanations:

1. Lines 1-6: Definition for the lshift procedure that removes the first element of a list.

2. Line 9: myproc is defined with a single argument, args, that can take any number of
elements. In this example code, myproc supports three command line options: -ports
<string>, -verbose, and -help.

3. Lines 19-44: Loop through all the command line arguments. When all the arguments have
been processed, the args variable is empty.

4. Line 20: The command line argument that needs to be processed is saved inside the flag
variable. Use the lshift proc to get the argument and remove it from the args variable.

5. Lines 21-43: Check the content of the flag variable against all the valid arguments. The
switch statement uses the -exact option so that the full option name is checked against the
content of flag. For example, to define the ports, the user needs to specify -p or -ports.

The -p/-ports option takes a command line argument that is being read and removed from
the list args with lshift args (line 24).

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 28Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=28

The -v/-verbose option is just a boolean and therefore does not need any additional
argument from args (line 28).

Lines 31-33: Check for the -h/-help options.

Lines 36-38: Check for any command line argument starting with "-" (without quotes). In this
sample proc, they are not supported.

Lines 39-40: Check for a command line argument that does not start with "-" (without
quotes). In this example proc, they are not supported.

6. Lines 46-64: Display the embedded Help if -h/-help has been specified. Those lines as well
as lines 30-33 can be removed if the proc does not need to provide any embedded Help.

7. Lines 68-70: Check if any error has occurred. Typically, some additional code to check the
validity of the arguments should happen before line 68. If there would be any error or, for
example, incompatibility between the command line options provided by the user, then the
error variable could be incremented which would then trigger line 69.

8. Line 73 and beyond: Add your code here.

The above code parses the command line arguments and searches for an exact match with the
supported options (line 21). However, there are some cases when it might be better to match the
command line arguments against some expressions instead of searching for an exact match. This
is done by using the -glob switch instead of the -exact switch on line 21. See the following
example.

21 switch -glob -- $flag {
22 -p* -
23 -ports {
24 set ports [lshift args]
25 }
26 -v* -
27 -verbose {
28 set verbose 1
29 }
30 -h* -
31 -help {
32 incr help
33 }
34 default {
35 if {[string match "-*" $flag]} {
36 puts " ERROR - option '$flag' is not a valid option."
37 incr error
38 } else {
39 puts "ERROR - option '$flag' is not a valid option."
40 incr error
41 }
42 }
43 }

Lines 22, 26 and 30 illustrate some expressions using the "*" as a wildcard. The above code
matches any string starting with -p as a valid command line option to define the ports, for
example -pfoo.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 29Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=29

Example

Although the example procedure, myproc, is acceptable for an interactive command, it has some
runtime overhead due to the parsing of the arguments. The runtime overhead might not be
acceptable for a low-level procedure that is called many times. A different technique can be used
to add some command line arguments to a procedure that needs very little runtime overhead.
This is done by assigning the list of commands line arguments to a Tcl array. However, this implies
that each command line option has one and only one argument. See the following example.

01 proc myproc2 { args } {
02 # Default values
03 set defaults [list -p 123 -v 0]
04 # First, assign default values
05 array set options $defaults
06 # Then, override with user choice
07 array set options $args
08
09 set ports $options(-p)
10 set verbose $options(-v)
11 set error 0
12
13 # Check validity of arguments. Increment $error to generate an error
14
15 if {$error} {
16 return -code error {Oops, something is not correct}
17 }
18
19 # Do something
20
21 return -code ok {}
22 }

Explanations

1. Line 1: myproc2 is defined with a single argument, args, that can take any number of
elements. However, since args is used later to set a Tcl array, it must have an even number
of arguments.

2. Line 3: Default values for the various options. Each option has one and only one value.

3. The format of the list is:

expanse="page"> <option1> <valueForOption1> <option2> <valueForOption2>
 <optionN> <valueForOptionN>

4. Line 5: The Tcl array options is initialized with the default values.

5. Line 7: The args variable overrides the default values

6. Line 9-10: The value of each option is being read with $options(<option>). It is also
possible to check that an option exist with the following.

if [info exists options(<option>)] { }

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 30Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=30

Note: The command line options that are working as a flag and have no intrinsic value are easily
implemented by passing, for example, a value of 0 or 1 with the option. In the previous example
procedure, the flag -v is turned on with: myproc2 -v 1.

Local and Global Variables
A local variable is a variable created inside a procedure. It is created at runtime inside the stack of
the function. The variable is only accessible within the procedure and the variable name is not
subject to name collision with variable names outside of the procedure. This means that, for
example, a local variable foo created inside a procedure is different from a variable foo created
outside of the procedure and both variables have independent content. A local variable is created
with the set Tcl keyword like any other variable.

The parameters defined as the arguments of a procedure are, by default, local variables.
Whenever a procedure is called (for example reportCriticalPaths $myfilename), the
content of the calling variables (for example $myfilename) are copied inside the stack of the
procedure. If the calling variables are Tcl lists with a large number of elements, this mechanism
has a runtime and memory penalty. There are also some scenarios when it is necessary to modify
the content of the caller variables. Tcl provides a way to do that by passing a variable name as a
reference instead of passing the content of the variable. Once a variable is passed as a reference,
any modification of the variable inside the procedure directly modifies the caller's variable inside
the caller's space. The keyword upvar is used inside the body of the procedure to define a
parameter that is passed as reference. The procedure lshift that has been introduced earlier
uses this technique:

proc lshift {listVar} {
 upvar 1 $listVar L
 set r [lindex $L 0]
 set L [lreplace $L [set L 0] 0]
 return $r
 }

In the example proc myproc, lshift is called by passing the variable name args instead of the
content $args.

A global variable is a variable created outside of a procedure and that belongs to the global
namespace. To refer to a global variable inside a procedure, the keyword global is used
followed by the variable name:

proc printEnv {} {
 global env
 foreach var [lsort [array names env]] { puts " $var = $env($var)" }
}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 31Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=31

The above example defines a procedure printEnv that prints the system environment variables.
The Tcl array, env is a global variable initialized when the Vivado tools start. The printEnv
procedure refers to the global env variable through the globalenv command. After the global
variable is declared, it is accessed like any local variable. The global variable can be read and
modified.

Another way to access a global variable is to specify the namespace qualifier with it. The
namespace qualifier for the global namespace is "::" (without any quotes) and therefore a
procedure can refer to the global variable env with ::env. The syntax is the same for any global
variable. For example:

proc printEnv {} {
 foreach var [lsort [array names ::env]] { puts " $var = $::env($var)" }
}

Since printEnv specifies the full path to the env variable, the procedure does not need to
declare global env.

Note: Xilinx does not recommend that you use global variables as they rely on variable names created
outside the scope of the procedure. Global variables are sometimes used to avoid having to pass large Tcl
lists to a procedure. The upvar technique should always be considered before using a global variable.

Note: When using the run infrastructure in Project mode, it is not possible to share global variables defined
inside the Vivado environment with the hook scripts. Refer to Getting User Inputfor recommended
methods to share information between scripts.

Note: The close_project and close_design commands do not change the state of the Tcl
interpreter. All the global variables and user created namespaces are persistent after running those
commands.

Namespaces for Procedures
By default, every procedure created inside the Tcl interpreter is created inside the global
namespace. A disadvantage of this is potential conflicts with the procedure or variable names
when multiple Tcl scripts from different sources are being used. In addition, the global namespace
is also being polluted by procedure names that might be only be used by some other procedures
and that are not meant to be directly accessed by the user.

Instead of defining all the variables and procedures in the global namespace, Tcl supports the
concept of namespace that encompasses variables and procedures inside a more private scope.
Namespaces can also be nested, so a namespace can be defined inside another namespace
without restriction on the number of levels of scoping. Namespaces add a new syntax to
procedure and variable names. A double-colon, ::, separates the namespace name from the
variable or procedure name.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 32Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=32

Below is an example that illustrates how a namespace is created and how procedures and
variables are assigned to the namespace. This example creates a namespace, foo that
reproduces the functionality of a small stack with two public procedures (push and pop):

01 namespace eval foo {
02 variable stack [list]
03 variable count 0
04 variable params
05 array set params [list var1 value1 var2 value2 var3 value3]
06
07 namespace export push pop
08
09 proc push { args } {
10 variable stack
11 variable count
12 lappend stack $args
13 incr count
14 }
15
16 proc pop {} {
17 variable stack
18 variable count
19 if {[llength $stack] > 0} {
20 set value [lindex $stack end]
21 set stack [lrange $stack 0 end-1]
22 incr count -1
23 return $value
24 } else {
25 error " no more element in the stack"
26 }
27 }
28
29 }
30
31 proc foo::dump {} {
32 variable stack
33 variable count
34 if {[llength $stack] > 0} {
35 puts " There are $count element(s) in the stack:"
36 foreach element $stack {
37 puts " $element"
38 }
39 return 0
40 } else {
41 error " no element in the stack"
42 }
43 }
44
45 namespace import foo::*

Explanations:

1. The namespace is defined with the command:

namespace eval <name> { }

2. Line 1 declares the namespace, foo and line 29 is the closing curly bracket of the namespace
definition.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 33Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=33

3. Variables inside the namespace are created with the command variable (lines 2-4):

variable <varname> ?<varvalue>?

A Tcl array cannot be initialized with the variable command. It needs to be created first
(line 4) and initialized afterward (line 5).

Note: Do not use the set command to declare variables inside a namespace as it will confuse the Tcl
interpreter in the case the same variable name exists in the global namespace.

4. Procedures can be created directly inside the namespace definition or outside. When a
procedure is created within the command, namespace eval { }, it does not need to
have the namespace qualifier in the name (in this example foo::).

Lines 9 and 16: push and pop are created inside the namespace definition

5. Procedures can also be created outside of the namespace definition and added to the
namespace by using the full namespace qualifier prepended to the procedure name. In the
above example, the procedure dump (line 31) is created output of the namespace definition
but added to the namespace foo.

6. Lines 10-11, 17-18, 32-33: Procedures refer to variables created inside the namespace using
the keyword variable.

7. A procedure created inside a namespace can be accessed with the full namespace qualifier,
for example foo::push, foo::pop and foo::dump. From within the namespace itself, the
namespace qualifier is not needed when referring to procedures from the same namespace.
For instance, if the procedure dump needs to call push, it does not need to specify
foo::push, but just push.

8. Line 7: The namespace supports the concept of public and private procedures. Although all
the procedures within a namespace can be accessed with the full namespace qualifier, a
namespace can specify which of the procedures can be exported outside of the namespace
with the command, namespace export . Once a procedure name is exported, it can be
imported into the global namespace with the command, namespace import (line 45).
Doing that enables the procedure to be directly called without having to specify the full
namespace qualifier.

Here is an example usage of the namespace foo:

vivado% foo::push This is a test
1
vivado% foo::push {This is another line}
2
vivado% push This is the third line
3
vivado% foo::dump
 There are 3 element(s) in the stack:
 This is a test
 {This is another line}
 This is the third line
0
vivado% puts "The last element stacked is: [foo::pop]"
The last element stacked is: This is the third line
vivado% puts "The previous element stacked is: [pop]"
The previous element stacked is: {This is another line}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 34Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=34

vivado% foo::dump
 There are 1 element(s) in the stack:
 This is a test
0
vivado% dump
invalid command name "dump"

Template Script
Below is a template script based on the notions that been introduced earlier. It illustrates:

1. Usage of a private namespace to avoid polluting the global namespace (lshift is only
available inside the namespace foo).

2. Handling of command line arguments (including -help and -version to provide a version
of the script).

3. Usage of return -error (or error) command to generate Tcl errors when it is needed.

namespace eval foo {
 namespace export myproc
 variable version 1.0
}
proc foo::lshift listVar {
 upvar 1 $listVar L
 set r [lindex $L 0]
 set L [lreplace $L [set L 0] 0]
 return $r
}
proc foo::myproc { args } {
 #---
 # Process command line arguments
 #---
 set error 0
 set help 0
 set verbose 0
 set ports {}
 # if {[llength $args] == 0} { incr help }; # Uncomment if necessary
 while {[llength $args]} {
 set flag [lshift args]
 switch -exact -- $flag {
 -p -
 -ports {
 set ports [lshift args]
 }
 -v -
 -verbose {
 set verbose 1
 }
 -h -
 -help {
 incr help
 }
 -version {
 variable version
 return $version
 }
 default {
 if {[string match "-*" $flag]} {
 puts " ERROR - option '$flag' is not a valid option."

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 35Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=35

 incr error
 } else {
 puts "ERROR - option '$flag' is not a valid option."
 incr error
 }
 }
 }
 }
 if {$help} {
set callerflag [lindex [info level [expr [info level] -1]] 0]
 # <-- HELP
 puts [format {
 Usage: %s
 [-ports|-p <listOfPorts>]
 [-verbose|-v]
 [-version]
 [-help|-h]
 Description: xxxxxxxxxxxxxxxxxxx.
 xxxxxxxxxxxxxxxxxxx.
 Example:
 %s -port xxxxxxxxxxxxxxx
} $callerflag $callerflag]
 # HELP -->
 return -code ok {}
 }
 # Check validity of arguments. Increment $error to generate an error
 if {$error} {
 return -code error {Oops, something is not correct}
 }
 # Do something
 return -code ok {}
}

Accessing Design Objects
The Vivado Design Suite loads the project, design, and device information into an in-memory
database, which is used by synthesis, implementation, timing analysis, and to generate a
bitstream. The database is the same for project and Non-Project flows. The database is updated
as you step through the FPGA design flow. You can write the database contents out to disk as a
checkpoint file (.dcp) at any point of the design flow. Using Tcl commands in the Vivado tools
lets you interact with the design database, query Tcl objects, read or set their properties, and use
them in Tcl scripts for various purposes. It is very helpful to understand the content of the
database, to understand how efficient scripts can be written around it.

The Vivado Design Suite Tcl interpreter provides access to many first class objects such as
project, device, nets, cells, and pins. The Vivado Design Suite updates these design objects
dynamically, as the design progresses, and loads them into the in-memory database in both
Project and Non-Project modes.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 36Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=36

You can interactively query design objects, analyze the state of your project, write a script to
access the in-memory design, and run custom reports or execute optional design flow steps.
Each object comes with a number of properties that can always be read and sometimes written.
Most design objects are related to other design objects, allowing you to traverse the design to
find related objects or information.

You can query design objects using the get_* Tcl commands which return list of design objects,
that can be directly manipulated, or assigned to a Tcl variable. The complete list of get_*
commands can be returned with help get_*. Caching objects in variables can save runtime by
reducing the number of queries to the design database. Querying the list of nets or pins can be a
time consuming process, so saving the results can speed the design flow when accessing the
information repeatedly. See Caching Objects for more on this topic.

Each class of design object (net, pin, port,) has a unique set of standard properties that can be
read and sometimes written to modify their value in the database. In addition, the design
attributes specified in the RTL source files, the Verilog parameters and VHDL generics are stored
with the associated netlist object as properties. For example, a port object has a property that
indicates its direction, while a net object has a property that defines its fanout. The Vivado tools
provides a number of commands for adding, changing, and reporting these properties. Using the
get_*-filter option lets you get a list of design objects that is filtered, or reduced, to match
specific property values, as described in Filtering Results. We can get the list of properties on an
object by using the list_property command. When a property type is enum, it is possible to
get the list of all the valid values by using the list_property_value command.

There are two properties that are common to all objects: NAME and CLASS. When an object is
assigned to a Tcl variable, a pointer to the object is stored in the variable. Objects can be passed
by variable to Tcl commands or Tcl procs. When an object is passed as an argument to a Tcl proc
or command which expects a string, the object's NAME property value is passed instead of the
object itself. The example below shows a cell object assigned to the variable, $inst, and the
results of the puts command and the report_property command on the $inst variable.
Notice that the puts command just prints the object NAME because it only works with strings,
while the report_property command returns all of the object properties and their values:

set inst [get_cells cpuEngine]
cpuEngine
puts $inst
cpuEngine
report_property $inst
Property Type Read-only Value
CLASS string true cell
FILE_NAME string true
C:/2014.1/cpu/project_1.srcs/sources_1/imports/netlist/top.edf
IS_BLACKBOX bool true 0
IS_PRIMITIVE bool true 0
IS_SEQUENTIAL bool true 0
LINE_NUMBER int true 812044
NAME string true cpuEngine
PRIMITIVE_COUNT int true 11720
REF_NAME string true or1200_top

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 37Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=37

You can also create custom properties for any class of design objects in the Vivado Design Suite.
This can be useful when you want to annotate some information from a script onto the in-
memory design objects. The following example creates a property, SELECTED, for a cell object.
The value of the property is defined as an integer.

create_property SELECTED cell -type int

Once a property has been created on a class of objects, it can be managed on a specific object
with set_property and get_property commands, and reported with list_property and
report_property commands. The following example sets the SELECTED property to a value
of 1 on all the cells that match the specified name pattern, *aurora_64b66b*:

set_property SELECTED 1 [get_cells -hier *aurora_64b66b*]

Getting Objects By Name
Most designs are made up of a series of blocks or modules connected in some hierarchical
fashion. Whether the design is crafted from the bottom-up, or the top-down, or from the middle
out, searching the design hierarchy to locate a specific object is a common task.

Figure 2: Searching the Design Hierarchy

By default, the get_* commands only return objects from the top-level of the design. You can
use the current_instance command before using the get_* commands to scope the design
object queries to a specific hierarchical instance of the design. To move the scope back to the
top-level of the design, you simply have to use the current_instance command with no
argument.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 38Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=38

As an example, Getting Objects By Name shows a hierarchical design where the modules A and B
are instantiated at the top-level. Module A includes the a1 and a2 hierarchical instances, and
module B includes the b1 and b2 hierarchical instances. Each of a1, a2, b1, and b2 has leaf cells
(unisim instances) inside, as indicated in the figure.

Set the current instance of the design to module B.
current_instance B
get_cells * ; # Returns b1 and b2, cells found in the level of the current
instance.
get_nets * ; # Returns nets from module B, the current instance.
Reset the current instance to the top-level of the design.
current_instance
get_cells * ; # Returns A and B, located at the top-level of the design.

Although the get_* commands only search the top level, or the level of the current instance,
you can specify a search pattern that includes a hierarchical instance name relative to the current
instance. By default, the current instance is set to the top-level of the design. To query the
instance b1 from the top level, you can specify the following name pattern:

get_cells B/b1 ; # Search the top-level for an instance with a hierarchical
name.

Using the -hierarchical Option

While the default behavior is to search for objects only at the level of the current instance, many
of the get_* commands have a -hierarchical option to enable searching the design
hierarchy level by level, starting from the level of the current instance.

get_cells -hierarchical * ; # Returns all cells of the design.
get_nets -hier *nt* ; # Returns all hierarchical nets that match *nt*.

However, one important feature of the -hierarchical option is that the Vivado tools try to
match the specified name pattern at each level of the design hierarchy, and not against the full
hierarchical name of an object. In general, when -hierarchical is used, the specified search
pattern must not include the hierarchical separator otherwise no object will be returned. There is
an exception to this rule when the netlist has been partially flattened during synthesis. That is
when the hierarchy separator is also used to mark the flattened netlist level. In this case, it is
possible to use it in the search pattern as it only represents a level of hierarchy in the name and
not in the design loaded in memory.

The following example is based on Getting Objects By Name which shows a purely hierarchical
netlist.

get_cells -hierarchical B/* ; # No cell is returned.
get_cells -hierarchical b* ; # B/b1 and B/b2 are returned.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 39Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=39

The -hierarchical search is equivalent to manually performing a search at each level of the
hierarchy, using the current_instance command to set the search scope to a particular
hierarchical instance, and return all the objects that match the specified name pattern at that
level. The following Tcl code, based on Getting Objects By Name, illustrates this manual process:

set result {}
foreach hcell [list "" A B A/a1 A/a2 B/b1 B/b2] {
 current_instance $hcell ;# Move scope to $hcell
 set result [concat $result [get_cells <pattern>]]
 current_instance ;# Return scope to design top-level
}

IMPORTANT! When -hierarchical  is used with -regexp , the specified search string is matched
against the full hierarchical name, and B/.*  will return all cell names that match this pattern. For
example, based on Getting Objects By Name, get_cells -hierarchical -regexp B/.*  returns
all the cells below the block B. See the Vivado Design Suite Tcl Command Reference Guide (UG835) for
more information on -regexp.

Using the -filter and -regexp Options

The Vivado Design Suite offers multiple ways to select a subset of objects with the get_*
commands, using the -filter and/or -regexp options in conjunction with the -
hierarchical option.

The table below summarizes the effect of the -hierarchical/-filter/-regexp options on
the pattern that is provided to the command:

get_* [-hierarchical] [-filter] [-regexp] pattern

Table 1: Effects of -hierarchical/-filter/-regexp Options

-hierarchical -filter -regexp Result
 Pattern matches the local name of objects that belong to the current

hierarchical level (current_instance).

Yes Pattern matches the local name of objects that belong to the current
hierarchical level (current_instance) and below.

Yes

 Pattern is a filtering expression applied to objects that belong to the
current hierarchical level (current_instance). The NAME property
matches against the full hierarchical name of the object.

Yes Yes
 Pattern is a filtering expression applied to objects that belong to the

current hierarchical level (current_instance) and below. The NAME
property matches against the full hierarchical name of the object.

 Yes Pattern is a regular expression that matches the local name of objects
that belong to the current hierarchical level (current_instance).

Yes

Yes
Pattern is a regular expression that matches the local name of objects
that belong to the current hierarchical level (current_instance) and
below.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 40Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug835-vivado-tcl-commands
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=40

Table 1: Effects of -hierarchical/-filter/-regexp Options (cont'd)

-hierarchical -filter -regexp Result

Yes Yes

Pattern is a filtering expression applied to objects that belong to the
current hierarchical level (current_instance). The Name property
matches against the full hierarchical name of the object. The matching
expressions are based on the regular expression format.

Yes Yes Yes

Pattern is a filtering expression applied to objects that belong to the
current hierarchical level (current_instance) and below. The Name
property matches against the full hierarchical name of the object. The
matching expressions are based on the regular expression format.

Note: The local name of an object refers to the part of the name that comes from the current hierarchical
level (current_instance). It does not include the part of the name inherited from the parent.

Note: When some parts of the design have been flattened, the local name of objects that belonged to the
flattened levels includes the hierarchical separator. In such a case, the hierarchy separator in this part of
the name is not seen any more as a separator, but just as a literal character.

Note: The -filter option specifies a filtering expression where the pattern matching inside the
expression follows the global expression format. A filtering expression involves string matching based on
object properties and can be as complex as required. When the NAME property is used inside a filtering
expression, the full hierarchical name of the object is used for the string matching and not its local name.
However, only objects that belong to the current hierarchical level (current_instance) are being
considered. If -hierarchical is used with -filter, then all the objects that belong to the current
hierarchical level and below are considered for the filtering. If -regexp is used with -filter, the pattern
matching inside the expression follows the regular expression format.

Note: The -regexp option implies that the pattern provided to the command is a regular expression. Be
careful as some characters, such as * . [] +, have a special meaning inside a regular expression. Those
characters need to be escaped when used as literal and not as special characters in the context of the
regular expression.

The string matching is case sensitive and always anchored to the start and end of the search
string. To match a sub-string of a search string, use the following syntax depending on whether
or not a regular expression is used:

• The pattern follows the format of a regular expression (-regexp only): .*<substring>.*

• The pattern follows the format of a global expression (other options): *<substring>*

Following are some examples based on the cpu_hdl project, which can be found under the
Open Example Project link on the Getting Started page of the Vivado IDE, that illustrate the
differences between the options.

• Change the current instance to fftEngine/fftInst/ingressLoop[7].ingressFifo:

vivado% current_instance fftEngine/fftInst/ingressLoop[7].ingressFifo
fftEngine/fftInst/ingressLoop[7].ingressFifo

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 41Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=41

• Get all the cells under the current instance: there is only one (hierarchical) cell:

vivado% get_cells
fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo
vivado% get_cells -hier
fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo
fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo/
infer_fifo.two_rd_addr_reg
[8]_i_1__29 (154 other cells)

• The local name of the cells under the current instance and below does not include
ingressLoop. The string ingressLoop is inherited from the parent cell and is part of the
full hierarchical name:

vivado% get_cells *ingressLoop*
WARNING: [Vivado 12-180] No cells matched '*ingressLoop*'.
vivado% get_cells *ingressLoop* -hier
WARNING: [Vivado 12-180] No cells matched '*ingressLoop*'.

• With the -filter option, the NAME property matches the full hierarchical names:

vivado% get_cells -filter {NAME =~ *ingressLoop*}
fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo
vivado% get_cells -filter {NAME =~ *ingressLoop*} -hier
fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo
fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo/
infer_fifo.two_rd_addr_reg
[8]_i_1__29 (154 other cells)

• Search for cells matching the pattern *reg[*]*:

vivado% get_cells *reg[*]*
WARNING: [Vivado 12-180] No cells matched '*reg[*]*'.
vivado% get_cells *reg[*]* -hier
fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo/
infer_fifo.wr_addr_reg[9]_
i_1__15 (109 other cells)
vivado% get_cells -hier -regexp {.*reg\[.*\].*}
fftEngine/fftInst/ingressLoop[7].ingressFifo/buffer_fifo/
infer_fifo.wr_addr_reg[9]_
i_1__15 (109 other cells)
vivado% get_cells -hier -regexp {.*reg[.*].*}
WARNING: [Vivado 12-180] No cells matched '.*reg[.*].*'.

The last query, get_cells -hier -regexp {.*reg[.*].*} does not match any cell since
the square brackets, [] have not been escaped. As a result, they are processed as special
characters for the regular expression and not as literal square brackets in the cell name.

When a range of values needs to be specified in the filtering expression, the -regexp option
should be used in addition to the -filter option. For example, the code below only gets the
cells from *reg[0]* to *reg[16]*. The regular expression is built around matching .*reg
\[[0-9]\].* or matching .*reg\[1[0-6]\].* as shown below:

expanse="page">vivado% get_cells -hierarchical -regexp -filter {NAME =~
".*reg\[([0-9]||1[0-6])\].*"}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 42Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=42

In another example, both commands below return all the tiles matching CLB*X*Y*, excluding the
tiles from CLB*X1Y* to CLB*X16Y* with X between 1 and 16:

expanse="page">vivado% get_tiles -regexp -filter {NAME !~ "CLB.*X([1][0-6]|
[0-9])Y.*" && TYPE=~ "CLB.*"}

expanse="page">vivado% get_tiles -regexp -filter {NAME !~ "CLB.*X1[0-6]Y.*"
&& NAME !~ "CLB.*X[1-9]Y.*" &&
 TYPE=~ "CLB.*"}

Searching for Pins

Figure 3: Searching for Pin Names

The names of pins are based on the instance they belong to. When searching for pins, you must
use the hierarchy separator character to separate the instance name and the pin name patterns.
The following examples are illustrated by Searching for Pins.

Current instance is set to design top-level
get_pins B/* ; # Returns B/clk B/din0 B/din1 B/dout0 B/dout1
get_pins B/b2/*/O ; # Returns B/b2/data_reg_i_1/O
current_instance B/b2 ; # Change scope to B/b2
get_pins *_reg/D ; # Returns B/b2/data_reg/D

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 43Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=43

You can also use the -hierarchical option when searching for pins:

current_instance ; # Reset to the top-level of the hierarchy
get_pins -hier */D # Returns pin objects for all D pins in the design

Note: -hierarchical and -hier refer to the same option. The Vivado Design Suite Tcl shell completes
option names automatically if enough characters are provided to identify a unique option. Therefore, -
of_object and -of can also refer to the same option.

Filtering Results

More often than not, when you use get_* to search for design objects, you are only interested
in a subset of the objects returned. You might not want all of the netlist objects in the design, but
for example, only cells of a certain type, or nets of a certain name. In some cases, only a subset of
elements are of interest and need to be returned.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 44Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=44

Figure 4: Searching Hierachical Designs

You can limit the search results, by narrowly defining your search pattern, using wildcards '*' and
‘?’, or using -regexp to build complex search patterns to evaluate. You can limit the scope of
hierarchy being searched, by setting the current_instance or by specifying -hierarchy.

For example, the following expressions return different results:

get_cells * ; # Returns 2 cells: A,B
get_cells -hier * ; # Returns all cells of the design (leaf and
hierarchical)
get_cells -hier * -filter {NAME =~ */?1/*} ; # Returns 3 cells: A/a1/
data0_i,
 # A/a1/data_reg, B/b1/
data_reg

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 45Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=45

The -filter option lets you filter the results of the get_* commands, based on specific
properties of the objects being searched. For example, the following command returns all the
cells with a hierarchical name that begins with B/b*, and that have not been placed by the user,
so that IS_LOC_FIXED is FALSE, or 0:

set unLoced [get_cells -hier -filter {NAME =~ B/b* && !IS_LOC_FIXED}]

IMPORTANT! The NAME property contains the full hierarchical name of the object. When filtering on the
NAME property, the pattern is evaluated against the complete NAME string, regardless of the other
options used in the command, including -hierarchical.

The -filter option causes Vivado to filter the results of a query before it is returned. However,
in some cases you may have assigned the results of a prior search to a variable, that is now
stored in memory. The filter command lets you filter the content of any list of objects,
including lists stored in a variable. Using the results of the prior example, stored in $unLoced,
you can further filter the list of objects as follows:

set unLocedLeaf [filter $unLoced {IS_PRIMITIVE}]

The preceding example filters the stored results of the prior search, filtering the list to return only
the objects that are primitive instances in the design.

IMPORTANT! The filter  command does not modify the original Tcl variable and therefore the result
must be saved inside another Tcl variable.

TIP: Note the direct use of the boolean properties IS_LOC_FIXED and IS_PRIMITIVE in the example above.
Boolean (bool) type properties can be directly evaluated in filter expressions as true or false.

The specific operators that can be used in filter expressions are "equals" and "not-equals" (==
and !=), and "contains" and "not-contains" (=~ and !~). Numeric comparison operators <, >, <=,
and >= can also be used. Multiple filter expressions can be joined by AND and OR (&& and ||).

Getting Objects by Relationship
There are times when you will need to find objects that are related to other objects in the design.
For instance, selecting all of the nets connected to the pins of a specific cell, or all of the cells
connected to a specific net. The Vivado Design Suite provides the ability to traverse the elements
of the design through their various relationships to one another. This is accomplished through the
use of the -of_objects option supported by many of the get_* commands. Getting Objects
by Relationship illustrates the relationship of objects in the in-memory design.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 46Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=46

Figure 5: Vivado Design Suite Object Relationships

net

cell

pin

port

clock

X13116

Note: This image is intended to be representative, and is not a complete map of all objects and
relationships in the Vivado Design Suite database.

The Help message for each of the get_* commands that supports the -of_objects option
lists the related objects that can be traversed:

get_cells -of_objects {pins, timing paths, nets, bels or sites}
get_clocks -of_objects {nets, ports, or pins}
get_nets -of_objects {pins, ports, cells, timing paths or clocks}
get_pins -of_objects {cells, nets, bel pins, timing paths or clocks}
get_ports -of_objects {nets, instances, sites, clocks, timing paths, io
standards, io
banks, package pins}

With the -of_objects option, getting the list of all pin objects attached to a list of net objects
becomes very simple:

get_pins -of_objects [get_nets -hier]

To only get the list of drivers for those nets you just need to use the -filter option:

get_pins -of [get_nets -hier] -filter {DIRECTION == OUT}

Note: If an empty list of objects is passed through -of_objects, then the get_* command returns an
empty Tcl list.

You can also get the list of pins from a list of cells, or a list of cells from a list of nets and so on.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 47Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=47

Figure 6: Traversing Objects by Relationship

Using Getting Objects by Relationship as an illustration, the following example gets the clock pin
from instance a1, then works its way outward and upward through the hierarchy. It gets the net
connected to that pin, and gets the pins connected to that net, then gets the nets connected to
those pins, and finally gets the pins connected to those nets.

get_pins -of [get_nets -of [get_pins -of [get_nets -of [get_pins A/a1/
clk]]]]
A/a2/clk A/clk A/a1/clk B/clk

Notice that the last get_pins command returns the clock pin of hierarchical module B, B/clk,
along with the other pins that have already been returned. However, to cross the hierarchy, and
return the primitive pins on the clock net object, you can use the -leaf option of the
get_pins command. The following example shows what is returned when -leaf is used:

get_pins -leaf -of [get_nets -of [get_pins -of [get_nets -of [get_pins A/a1/
clk]]]]
B/b1/data_reg/C A/a2/data_reg/C A/a1/data_reg/C B/b2/data_reg/C

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 48Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=48

get_nets Command
The get_nets command can return multiple representations of the same net as the net
traverses through the design hierarchy. Below are some examples using the options provided
with get_nets to ensure that the proper representation of the net is selected.

The following examples use the leaf pin of a LUT2 as defined below to query different segments
of the net connected to the leaf pin.

set mypin [get_pins{egressLoop[7].egressFifo/buffer_fifo/infer_fifo.wr_addr_reg[9]_i_1__6/
I0}]
mark_objects -color green $mypin

Figure 7: Set mypin Example

Simply getting the net connected to the leaf pin mypin returns the net segment within the
hierarchy directly connected to the leaf pin.

select_objects [get_nets -of $mypin]

In order to select all segments of the net connected to leaf pin mypin, use the -segments
option.

select_objects [get_nets -segments -of $mypin]

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 49Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=49

Figure 8: get_nets Segments Example

In order to only get the net segment at the highest level of the hierarchy connected to the leaf
pin mypin, use the -top_net_of_hierarchical_group along with the -segments option.
This is often useful when printing debug statements as this will provide the name of the net with
the shortest number of characters.

select_objects [get_nets -top_net_of_hierarchical_group -segments -of
$mypin]

Figure 9: get_nets Top Segments Example

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 50Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=50

Figure 10: get_nets of Pin Example

Timing Path Object
The get_timing_path command can be used to return a list of timing path objects. Because
the get_timing_path command uses the same engine as the report_timing command, it
also shares most of its command line options.

Timing path objects can be very practical to perform advanced scripting related to static timing
analysis. The timing path object can also be used to generate the full text report of the path using
report_timing -of <timingPathObject>.

The commands get_nets, get_cells, or get_pins can be used on a timing path object to
query list of nets/cells/pins in the datapath section of the path. The design elements inside the
source and destination clock networks cannot be queried.

The list of objects returned from a timing path objects by get_nets, get_cells, or get_pins
is sorted based on the appearance of the design elements inside the datapath.

Persistency of Objects
A Vivado object persists as long as the element it points to exists in memory. For example, if a Tcl
variable points to a cell object and the cell is deleted afterward (either manually or thought some
optimization steps), the cell object becomes null. This could lead to unexpected results or crash if
you execute a command that relies on it.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 51Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=51

In the same way, once a design or a project is closed, all the design objects and potentially all the
other Vivado objects are nullified, and any Tcl variable pointing to Vivado objects that no longer
exist is stalled.

CAUTION! If you execute a command that relies on an object that no longer exists in memory, the
command could produce unexpected results or cause a system crash.

For example, the code below is flawed:

 foreach port [get_ports] {
 # The 'port' object is used as key
 set dir($port) [get_property DIRECTION $port]
 }
 foreach key [array name dir] {
 puts "$key -> $dir($key)"
 }
 close_project
 # All the objects have been nullified
 foreach key [array name dir] {
 # null
 puts "$key -> $dir($key)"
 }

Once the project is closed, all the objects (i.e., port objects in this example) are nullified and
therefore it is no longer possible to print the list of ports.

To be able to print the list of ports after the design is closed, the associative array 'dir' should
have been built using the property NAME of the 'port' object:

foreach port [get_ports] {
 set dir([get_property NAME $port]) [get_property DIRECTION $port]}

Another example of objects becoming invalid is after using the command 'read_checkpoint -
cell <cell>'. When a checkpoint is read for a cell, the design is rebuilt in the background and
previous first-class objects become invalid. The code below could result in a crash as the objects
from the get_cell query are invalidated after the first read_checkpoint:

foreach cell_hd [get_cell -hier -filter HD.RECONFIGURABLE==1] {
 read_checkpoint -cell $cell ...
}

The safe way to write the code is to convert the objects into their string representation:

foreach cell_hd [get_property NAME [get_cell -hier -filter
HD.RECONFIGURABLE==1]] {
 read_checkpoint -cell $cell ...
}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 52Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=52

Handling Lists of Objects
When using the get_* commands, the returned object looks and acts like a standard Tcl list.
However, the Vivado Design Suite is returning a container of a single class of objects (for
example cells, nets, pins, or ports), which is not a generic Tcl list. However, for most of your
purposes, the container of objects looks and acts just like any Tcl list. The container of objects is
handled automatically by the Vivado Design Suite, and is totally transparent to the user. For
example, the standard Tcl llength command can be used on a container of objects (for example
from get_cells) and returns the number of elements in the container, like it would for any
standard Tcl list.

The built-in Tcl commands that handle lists in the Vivado Design Suite have been overloaded and
enhanced to fully support objects and containers of objects. For example, lsort, lappend,
lindex, and llength, have been enhanced to manage the container based on the NAME
property of the object. The result of these commands, when passed a container of objects,
returns a container of objects. For example, lsort will sort a container of cells from the
get_cells command based on the hierarchical names of the objects.

You can add new objects to the container (using lappend, for instance), but you can only add
the same type of object that is currently in the container. Adding a different type of object, or
string, to the list is not permitted and will result in a Tcl error.

The following example shows a Vivado container being sorted in a descending order, and each
object put onto a separate line, by using the puts command and a foreach loop:

foreach X [lsort -decreasing [get_cells]] {puts $X}
wbArbEngine
usb_vbus_pad_1_i_IBUF_inst
usb_vbus_pad_0_i_IBUF_inst
usbEngine1
usbEngine0
...

Note: Although the lappend command is supported by the Tcl Console, it is not supported in a XDC
constraint file with the read_xdc command. However, it is possible to convert a list built with the
lappend command in a different way that is compatible with the read_xdc command. In the following
example:

set myClocks {}
lappend myClocks [get_clocks CLK1]
lappend myClocks [get_clocks CLK2]
lappend myClocks [get_clocks CLK3]

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 53Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=53

The Tcl variable myClocks can be built differently to be compatible with the read_xdc
command:

set myClocks [list [get_clocks CLK1] \
 [get_clocks CLK2] \
 [get_clocks CLK3] \
]

Collection versus String Representation
The get_* commands do not create a regular Tcl list of elements. They create a Vivado
collection of objects, but the Vivado collections have been implemented in such way that they
behave like any regular Tcl list. The process is transparent to the user and to Tcl. Vivado
collections behave like Tcl lists and can be manipulated in the very same way and with the same
commands.

Vivado collections have been implemented in Tcl to improve runtime and reduce the memory
footprint when dealing with Vivado objects.

Now, when a Vivado collection is converted as a string, it is possible to limit the number of
objects to be converted. So, for example, if you print in the Tcl console a list of instances, and
that the list (a Vivado collection under the hood) has 100,000 instances, only the first 500
(default limit) instances will be exported. This avoids cluttering the Tcl console with a string that
could be extremely long.

The notion of string representation of a Vivado collection of objects is important to understand.
The maximum number of objects to include in the string representation of a collection is
controlled through the parameter tcl.collectionResultDisplayLimit:

 tcl.collectionResultDisplayLimit 500 integer true

The maximum number of elements can be displayed by any command that displays a collection.
You can make this unlimited by setting the limit to 0. (default: 500). For example:

set_param tcl.collectionResultDisplayLimit 0
set_param tcl.collectionResultDisplayLimit 1000

When a Vivado collection has more elements than the limit defined by the parameter
tcl.collectionResultDisplayLimit, only the first nth elements are converted as a
string, then '...' is added at the end of the string representation to indicate that more elements in
the original collection have not been included.

Note: The string representation does not alter the original collection in any way so there is never any loss
of elements in the original collection.

Note: The parameter tcl.collectionResultDisplayLimit only applies to string representation of
Vivado collections. It does not apply to string representation of regular Tcl lists.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 54Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=54

For example, if a design has 20000 instances:

vivado% set cells [get_cells -hier]
vivado% llength $cells
20000
vivado% set var [join $cells "\n"]
vivado% llength $var
501
vivado% lindex $var end
...

Redirecting Output
Many of the Vivado Design Suite Tcl commands allow you to redirect the information returned by
the command to a file with the -file option, for printing or processing outside of the tool; or as
a string that can be saved in a variable with the -return_string option for further processing
within the Vivado tools.

All of the report commands support the -file option. File output is useful for report commands
that output a great deal of information, that may require further review, or support the
documentation of a design project, or to pass to downstream processes such as other design
disciplines, or other departments. Some of the commands supporting file output include:

report_datasheet
report_drc
report_power
report_timing
report_timing_summary
report_utilization

For example, to save the results of the report_timing command to a file:

report_timing -delay_type max -file setup_violations.rpt
report_timing -delay_type min -file hold_violations.rpt

A relative or absolute path can be specified as part of the file name. A relative path is relative to
the directory from which the Vivado tools have been started, or to the current working directory
which can be retrieved with the pwd command.

TIP: If the path is not specified as part of the file name, the file is written into the current working
directory, or the directory from which the Vivado tools were launched.

To append the content from a command to an existing file, use the -append option in addition
to -file. For example, the code below creates one file, all_violations.rpt, that combines
the output of two separate commands:

report_timing -delay_type max -file all_violations.rpt
report_timing -delay_type min -file -append all_violations.rpt

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 55Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=55

After the file has been created, you may have need to access the file from the file system,
opening the file to read from it, or to write to it. The Vivado Design Suite Tcl console offers a
number of commands for accessing files. See Accessing Files for more information.

All report_* commands also support the -return_string option. This option directs the
command to return its output as a string that can be assigned to a Tcl variable. Assigning the
command output to a variable is useful for further processing within the Tcl script, to allow
extraction of key information to enable flow control, branching, and to set other variables for use
in the script.

Some of the commands that support -return_string are:

report_clocks
report_clock_interaction
report_disable_timing
report_environment
report_high_fanout_nets
report_operating_conditions
report_power
report_property
report_pulse_width
report_route_status
report_utilization

You can split the returned string from the report on the newline character, \n, to process the
string line by line as a list:

set timeLines [split [report_timing -return_string -max_paths 10] \n]

The Vivado Design Suite Tcl console also offers many tool for working with strings. See Working
with Strings for more information.

Accessing Files
After a file has been written to the file system, Tcl provides many useful commands for working
with the files. You can extract elements of a file, such as the file path, file name and file
extension. Some of the Tcl commands available to examine information about file include:

• file exists <filename>: A boolean test that returns 1 if filename exists, and you
have permission to read its location; returns 0 otherwise. Use this to determine if the file you
are looking for already exists.

• file type <filename>: Returns the type of filename as a string with one of the following
values: file, directory, characterSpecial, blockSpecial, fifo, link, or socket.

• file dirname <filename>: This returns the directory structure of the fileName, up to
but not including the last slash.

• file rootname <filename>: Returns all the characters in filename up to but not
including last dot.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 56Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=56

• file tail <filename>: Return all characters in filename after the last slash.

• file extension <filename>: Returns all characters in filename after, and including,
the last dot.

The following examples illustrates some of the Tcl commands:

set filePath {C:/Data/carry_chain.txt}
file dirname $filePath ; # Returns C:/Data
file tail $filePath ; # Returns carry_chain.txt
file extension $filePath ; # Returns .txt

After the Vivado tools have created a file, through a report_* command, or write_*
command, you can open the file from within a Tcl script to read its contents, or to write
additional content. To open, read from, write to, and close a file, you can use some of the
following Tcl commands:

• open <filename> [access] [perms]: Opens the filename and returns the file
handle, or fileID, used to access the file. It is a standard practice to capture the fileID in a
Tcl variable, so that you can refer to the file handle when needed. The file permissions of a
new file are set to the conjunction of perms and the process umask. The access mode
determines whether you can read to or write to the open file. Some common access modes
are:

• r: Read only. The file must exist; it will not be created. This is the default access mode if
one is not specified.

• w: Write only. This will create the specified file if it does not already exist. The data is
written to the front of the file, truncating or overwriting the content of an existing file.

• a: Append only. This will create the specified file if it does not already exist. The data is
written at the end of the file, appending to any existing file content.

• read [-nonewline] fileId: Read all remaining bytes from fileId, optionally
discarding the last character if it is a newline, \n. When used in this form right after opening
the file, the read command will read the entire file at once.

• read fileIdnumBytes: Read the specified number of bytes, numBytes, from fileId.
Use this form of the command to read blocks of the file, up to the end of the file.

• eof fileId: Returns 1 if an end-of-file (EOF) has occurred on fileId, 0 otherwise.

• gets fileId [varName]: Read the next line from fileId, discarding the newline
character. Places the characters of line in $varName if given, otherwise returns them to the
command shell. The following are different forms of the gets commands:

gets $fileHandle
Append line 4 of file.
gets $fileHandle line
28
puts $line

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 57Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=57

Append line 5 of file.
set line [gets $fileHandle]
Append line 6 of file.
puts $line
Append line 6 of file.

In the preceding example, $fileHandle is the file handle returned when the file was
opened. The first line uses the simple form of gets, without specifying a Tcl variable to
capture the output. In this case the output is returned to stdout. The second form of the
command assigns the output to a variable called $line, and the gets command returns the
number of characters it has read, 28.

Note: You can assign the return of the gets command to a Tcl variable, but depending on which form
you are using you may capture the contents of the file, or the number of characters the gets command
has read.

• puts [-nonewline] [fileId] string: Write a string to the specified fileId,
optionally omitting the newline character, \n. The default fileId for the puts command is
stdout.

• close fileId: Close the open file channel fileId. It is very important to close any files
your Tcl scripts have opened, or you may develop memory leaks in the Vivado application, or
encounter other undesirable effects.

The following example opens a file in read access mode, storing the file handle as $FH, reads the
contents of the file in a single operation, assigning it to $content, and splits the contents into a
Tcl list. The file is closed upon completion.

Note: It is not recommended to read large files in a single operation due to performance and memory
considerations.

Rather than reading the entire file at once, and then parsing the results, the following example
reads the file line-by-line until the end of the file has been reached, and writes the line number
and line content to stdout. The file is closed upon completion:

set FH [open C:/Data/carry_chains.txt r]
set i 1
while {![eof $FH]} {
 # Read a line from the file, and assign it to the $line variable
 set line [gets $FH]
 puts "Line $i: $line"
 incr i
}
close $FHset FH [open C:/Data/carry_chains.txt r]
set content [read $FH]; # The entire file content is saved to $content
foreach line [split $content \n] {
 # The current line is saved inside $line variable
 puts $line
}
close $FH

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 58Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=58

The example below writes to a file, ports.rpt, saving all the I/O ports from the design, with
the port direction, sorted by name:

set FH [open C:/Data/ports.rpt w]
foreach port [lsort [get_ports *]] {
 puts $FH [format "%-18s %-4s" $port [get_property DIRECTION $port]]
}
close $FH

In the example above, the file is opened in write mode. Unlike read mode, the write mode will
create the file if it does not exist, or overwrite the file if it does exist. To write new content to the
end of an existing file, you should open the file in append mode instead.

Working with Strings
The -return_string argument directs the output of a report_* command to a Tcl string
rather than to stdout. The string can be assigned to a Tcl variable, and parsed or otherwise
processed.

set rpt [report_timing -return_string]

After the string has been assigned to a variable, Tcl provides many useful commands for
processing the string in a number of ways:

• append string [arg1 arg2 ... argN]: Appends the specified args to the end of
string.

• format formatString [arg1 arg2 ... argN]: Returns a formatted string generated
to match the format specified by the formatString template. The template must be
specified using % conversion specifiers as used in sprintf. The additional arguments, args,
provide values to be substituted into the formatted string.

• reg exp [switches] exp string: Returns 1 if the regular expression, exp, matches all
or part of string, 0 otherwise. The -nocase switch can be specified to ignore character
case when matching.

• string match patternstring: Returns 1 if the glob pattern matches string, 0
otherwise.

• scan stringformatString [varName1varName2 ...]: Extracts values from the
specified string into variables, varName, applying the formatString using % conversion
specifiers as in sscanf behavior. If no varNames are specified, scan returns the list of
values to stdout

• string range stringfirst last: Returns the range of characters from string
specified by character indices first through last inclusive.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 59Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=59

• string compare string1string2: Performs a lexicographical comparison of two
strings, and returns -1 if string1 comes before string2, 0 if they are the same, and 1 if
string1 comes after string2.

• string last string1string2: Return the character index in string2 of the last
occurrence of string1. Returns -1 if string1 is not found in string2.

• string length string: Returns the number of characters in string.

The following example assigns the results of the report_timing command to the $report Tcl
variable, using -return_string. The string is processed to extract the start point, end point,
path group and path type of each path. After the path information is extracted, a summary of
that path is printed to the Tcl console.

Capture return string of timing report, and assign variables
set report [report_timing -return_string -max_paths 10]
set startPoint {}
set endPoint {}
set pathGroup {}
set pathType {}
Write the header for string output
puts [format " %-12s %-12s %-20s -> %-20s" "Path Type" "Path Group" "Start
Point" "End Point"]
puts [format " %-12s %-12s %-20s -> %-20s" "---------" "----------"
"-----------" "---------"]
Split the return string into multiple lines to allow line by line
processing
foreach line [split $report \n] {
if {[regexp -nocase -- {^\s*Source:\s*([^[:blank:]]+)((\s+\(?)|$)} $line -
startPoint]} {
} elseif {[regexp -nocase -- {^\s*Destination:\s*([^[:blank:]]+)((\s+\(?)|
$)} $line - endPoint]} {
} elseif {[regexp -nocase -- {^\s*Path Group:\s*([^[:blank:]]+)\s*$} $line
- pathGroup]} {
} elseif {[regexp -nocase -- {^\s*Path Type:\s*([^[:blank:]]+)((\s+\(?)|$)}
$line - pathType]} {
puts [format " %-12s %-12s %-20s -> %-20s" $pathType $pathGroup $startPoint
$endPoint]
}
}

An example output from the code is:

Path Type Path Group Start Point -> End Point
--------- ---------- ----------- -> ---------
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/
xOutReg_reg/A[0]
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/
xOutReg_reg/A[10]
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/
xOutReg_reg/A[11]
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/
xOutReg_reg/A[12]
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/
xOutReg_reg/A[13]
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/
xOutReg_reg/A[14]
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 60Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=60

xOutReg_reg/A[15]
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/
xOutReg_reg/A[16]
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/
xOutReg_reg/A[17]
Setup bftClk ingressLoop[0]/ram/CLKBWRCLK -> transformLoop[0].ct/
xOutReg_reg/A[18]

Controlling Loops
Tcl has few built-in commands such as for, foreach and while that are used to loop or iterate
through a section of code.

Their syntax is:

for <start testCondition next body>
foreach <varname list body>
while <testCondition body>

With all the above commands, the entire Tcl script body is executed at each iteration. However,
Tcl provides two commands to change the control flow of the loop: break and continue.

The break statement is used to abort the looping command. The continue statement is used
to jump to the next iteration of the loop.

Note: When running inside a proc, the loop can also be aborted using the return command. In this case,
not only the loop is aborted but the control goes back to the caller of the proc.

For example, let us suppose that we have a file that contains a list of cell names with the format
of one instance name per line. The sample code below reads this file and build a Tcl list that only
includes the cell names that currently exist in the design. The code reuses the procedure
get_file_content that was introduced earlier. If too many cell names are not found inside
the current design then the code stops processing the content of the file:

set valid_cell_names [list]
set error 0
set max_errors 1000
foreach line [split [get_file_content ./all_cell_names.lst] \n] {
 if {[get_cells $line] == {}} {
 # cell name not found
 puts " Error - cell $line not found "
 incr error
 if {$error > $max_errors} {
 puts " Too many errors occured. Cannot continue "
 break
 } else {
 # Go to next cell name
 continue

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 61Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=61

 }
 }
 lappend valid_cell_names $line
}
puts " [llength $valid_cell_names] valid cells have been found "

Error Handling
Checking Validity of Variables
When developing Tcl scripts, it is recommended to always check for corner cases and for
conditions where the code could fail. By doing the proper checks, it is possible to inform the user
of issues and/or incorrect usage of the script. If the checks are not correctly performed, then the
script could stop without informing the user about what went wrong and therefore what should
be corrected.

Example 1: Check when a file is opened for read/write (unsafe version).

if {[file exists $filename]} {
 set FH [open $filename r]
 if {$FH != {}} {
 # The file is opened, do something
 #
 close $FH
 } else {
 puts " File $filename could not be opened"
 }
} else {
 puts " File $filename does not exist"
}

Although the above script seems algorithmically correct, it would not work properly as the open
command generates a low-level Tcl error (TCL_ERROR) that would stop the execution of the
script in the event the file could not be opened. Later, in Example 3 we will see how this script
can be improved.

Example 2: Check that the Vivado objects are valid after using the get_* commands.

proc get_pin_dir { pinName } {
 if {$pinName == {}} {
 puts " Error - no pin name provided"
 return {}
 }
 set pin [get_pins $pinName]
 if {$pin == {}} {
 puts " Error - pin $pinName does not exist"
 return {}
 }
 set direction [get_property DIRECTION $pin]
 return $direction
}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 62Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=62

It is especially important to check that Vivado objects do exist after using the get_* commands
when those objects are used inside other commands (filter, get_*,).

Handling Tcl Errors
Some built-in Tcl commands (but also user procs) can generate a Tcl error (TCL_ERROR) that can
stop the execution of the script if the error is not caught by the program. An example is the file
command that generates a TCL_ERROR when the file cannot be opened.

To do safe programming and catch the TCL_ERROR condition, Tcl has a built-in catch command
that returns 1 when an error is caught and otherwise returns 0. The catch command can be
used on a single command or a set of commands.

The basic syntax of the catch command is:

catch script [varname]

Where the script is a single or a set of Tcl commands and varname is a variable name in which
the message explaining the TCL_ERROR is saved.

Note: The varname argument is optional.

The catch command is often used as illustrated below:

If {[catch script errorstring]} {
 # A low-level TCL_ERROR happened
 puts " Error - $errorstring "
} else {
 # No TCL_ERROR was generated
 puts " The code completed successfully "
}

Example 1 can be made safer using the catch command to cover the case where the file cannot
be opened:

Example 3: Check when a file is opened for read/write (safe version).

if {[file exists $filename]} {
 if {[catch { set FH [open $filename r] } errorstring]} {
 puts " File $filename could not be opened : $errorstring"
 } else {
 # The file is opened, do something
 #
 close $FH
 }
} else {
 puts " File $filename does not exist"
}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 63Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=63

A Tcl error can also be user generated using the error command. This can be used, for example,
to propagate a TCL_ERROR that is caught with the catch command to the upper level
(bubbling). However, the error command can be used as well to generate a TCL_ERROR when,
for example, a corner case is not supported by the script or an unexpected condition has
happened in the code.

For example, the proc below returns the file content or generates a TCL_ERROR when the file
cannot be opened:

proc get_file_content { filename } {
 if {[catch {
 set FH [open $filename r]
 set content [read $FH]
 close $FH
 } errorstring]} {
 error " File $filename could not be opened : $errorstring "
 }
 return $content
}

The proc get_file_content can be called through a catch command to catch the potential
error:

if {[catch { set content [get_file_content ./myreport.rpt] } errorstring]} {
 puts " The following error was generated: $errorstring "
} else {
 puts " The content of the file is: $content "
}

Example 2 can also be improved to generate a TCL_ERROR when a wrong condition occurs as
shown in Example 4:

Example 4: Check that the Vivado objects are valid. Generate a TCL_ERROR otherwise (revised).

proc get_pin_dir { pinName } {
 if {$pinName == {}} {
 error " Error - no pin name provided"
 }
 set pin [get_pins $pinName]
 if {$pin == {}} {
 error " Error - pin $pinName does not exist"
 }
 set direction [get_property DIRECTION $pin]
 return $direction
}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 64Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=64

Accessing Environment Variables
Tcl provides a convenient way to access the environment variables in a read-only mode through
the Tcl global variable env. The variable env is a Tcl array that is automatically created and
initialized at startup inside the Tcl interpreter.

Note: After initialization, any change to the env variable is not applied to the environment outside of the
Tcl interpreter. Similarly, any change to your environment variables done after starting the Tcl interpreter
will not be reflected by the env variable.

The keys of the env array are the environment variables at the time Vivado Design Suite starts.
The keys are case sensitive.

For example:

Vivado% puts "The PATH variable is $env(PATH) "

To get the list of all the Unix environment variables:

Vivado%: set all_env_var [array names env]

It is possible to check if an environment variable exists (i.e a key to env array exists) by using the
info command. For example to check for MYVARNAME:

Vivado% if {[info exists env(MYVARNAME)]} { }

The env array is a global variable and can therefore be referenced inside a proc after being
declared as global.

For example:

proc print_env {} {
 global env
 puts " UNIX Environment:"
 foreach var [lsort [array names env]] {
 puts " $var : $env($var)"
 }
}

Calling External Programs
It is possible to call external programs from within Tcl and capture the returned result. Although
there is an automated mechanism to send unknown Tcl commands to the OS (Windows/Linux)
for execution, it is always recommended to be explicit when calling external programs or
commands. This is done using the exec command.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 65Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=65

It is important to use the exec command for consistency of results, to make sure that the script
works under every host OS (Windows or Linux) and all Vivado modes (Tcl mode, GUI, or batch
mode).

The following example (Linux) gets the list of all files and directories under the run directory by
calling the ls command.

vivado% set result [exec ls]
vivado% foreach element [split $result \n] { ... }

The equivalent example on Windows is shown below.

vivado% set result [exec cmd /c dir /B]
vivado% foreach element [split $result \n] { ... }

It is not recommended to call the ls command without exec as the script could fail in some of
the Vivado modes (see Vivado Integrated Design Environment (IDE)/Tcl Modes versus Batch
Mode).

The next example executes a Perl script and sends the result to the Tcl environment. Note that
the exec command calls /bin/perl (assuming it matches your environment), which in turn
calls the Perl script itself:

vivado% set result [exec /bin/perl <path_to>/my_perl_script.pl]

Vivado Integrated Design Environment
(IDE)/Tcl Modes versus Batch Mode

The Tcl console that runs under the Vivado Integrated Design Environment (IDE) or Tcl mode
(vivado -mode tcl or vivado -mode gui) is slightly different from the one that runs
under the batch mode (vivado -mode batch).

This behavior is inherent to Tcl and is not related to the Vivado tool. Literature can be found on
the web that explains the underlying reasons.

But the consequence is that during an interactive session (Tcl or GUI modes), Vivado runs under
tclsh mode. However, in batch mode, Vivado runs in Tcl script mode.

Although in all three modes (Tcl, GUI and batch) the Tcl console behaves mostly the same, the Tcl
environment is slightly different. One difference is that in batch mode, the unknown commands
are not sent to the OS for execution. To make sure that a script will work under all the three
Vivado modes, it is recommended to explicitly use the exec command to execute external
programs.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 66Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=66

Creating Custom Design Rules Checks (DRCs)
The Vivado Design Suite lets you define and use custom design rule checks (DRCs) written in Tcl.
When creating custom DRCs be aware of the following:

• The basis of creating a custom DRC is a Tcl checker procedure that gets design objects of
interest, or attributes of those design objects, and a checking function that defines the design
rule. The Tcl checker procedure is defined in a separate Tcl script that must be loaded into the
Vivado Design Suite prior to running report_drc. Inside of the Tcl checker procedure, the
create_drc_violation command is used to identify and flag violations when checking
the rule against a design. The create_drc_violation command creates a violation object
within the in-memory design, with properties that can be reported and further processed in
the Vivado Design Suite.

• The Tcl checker procedure is associated to a user-defined DRC that is created using the
create_drc_check command. Call this rule by name when you run the report_drc
command.

• Optionally, you can elect to create a DRC rule deck by using the create_drc_ruledeck
command. A DRC rule deck is a collection of DRCs. A mix of both user-created and predefined
DRCs can be added to the user-created DRC rule deck by using the add_drc_checks
command.

• Checking the design against the design rules is performed by running the report_drc
command. When running report_drc, you can specify to run either a DRC rule deck, user-
defined design rule checks, or predefined DRCs.

Creating a Tcl Checker Procedure
The Tcl checker procedure selects the design objects of interest to be checked. It then performs
the necessary tests or evaluations of the design objects, and finally returns the results in the form
of DRC violation objects that identify the objects associated with the specific error.

The following Tcl script defines the dataWidthCheck Tcl checker procedure which checks the
width of the WRITE_B bus. This Tcl script file must be loaded into the Vivado tools prior to
running the report_drc command. Refer to Loading and Running Tcl Scripts for more
information on loading the Tcl checker procedure.

This is a simplistic check -- report BRAM cells with WRITE_WIDTH_B wider
than 36.
proc dataWidthCheck {} {
 # list to hold violations
 set vios {}
 # iterate through the objects to be checked
 foreach bram [get_cells -hier -filter {PRIMITIVE_SUBGROUP == bram}] {
 set bwidth [get_property WRITE_WIDTH_B $bram]
 if { $bwidth > 36} {
 # define the message to report when violations are found
 set msg "On cell %ELG, WRITE_WIDTH_B is $bwidth"

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 67Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=67

 set vio [create_drc_violation -name {RAMW-1} -msg $msg $bram]
 lappend vios $vio
 }; # End IF
 }; # End FOR
 if {[llength $vios] > 0} {
 return -code error $vios
 } else {
 return {}
 }; # End IF
} ; # End PROC

As you can see from the proc definition, the dataWidthCheck procedure accepts no
arguments and can find everything it needs from the design. It creates an empty list variable,
$vios, to store the violation objects returned by the create_drc_violation command.

The dataWidthCheck procedure iterates through all of the BRAMs in the design, and performs an
evaluation of the WRITE_WIDTH_B property on each of those cells. If the WRITE_WIDTH_B of
the block RAM cell exceeds a width of 36, a DRC violation is created with a specific message,
$msg. The message contains a placeholder for the cell %ELG and the width of the bus found,
$bwidth. In the dataWidthCheck procedure, the create_drc_violation command only
returns one object, $bram, that maps to the %ELG placeholder defined in the message string. The
create_drc_violation command supports messaging placeholders for netlist objects, clock
regions, device sites, and package I/O banks by using their respective keys %ELG, %CRG, %SIG,
and %PBG.

IMPORTANT! Both the order and the type of objects passed by create_drc_violation  must
match the -msg  specification in the create_drc_check  command, or the expected substitution will
not occur.

A violation object is created using the create_drc_violation each time the tested block
RAM exceeds the allowable width of the WRITE_WIDTH_B property. The violation object is
given the same name as the associated DRC rule in the Vivado Design Suite. It includes the
previously defined messaging string, and identifies the specific object or objects that are involved
in violation of the rule. The standard object that the design rule violation can return includes
cells, ports, pins, nets, clock regions, device sites, and package I/O banks. The message string
from the violation can also pass other information, such as the value of a specific property, in
order to provide as much detail in the DRC report as needed.

If any violations are found, the dataWidthCheck proc returns an error code to inform the
report_drc command of the results of that specific check:

return -code error $vios

In addition to the error code, the violation objects are returned with the $vios variable, which
stores a list of violation objects created by the procedure.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 68Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=68

Creating a DRC Check
Once the Tcl checker procedure is defined, you must now define the DRC as part of the DRC
reporting system within the Vivado Design Suite.

First, you must register the new design rule using the create_drc_check command. This
command requires you to provide a unique name for the user-defined rule check. This name that
must match the name given to the violation created by the Tcl checker procedure. You will need
to specify this unique name when adding the check to DRC rule decks or when running
report_drc. In the dataWidthCheck Tcl checker procedure above, the
create_drc_violation command uses the name RAMW-1. In addition, the
create_drc_check command requires you to provide the procedure name of the Tcl checker
procedure to be run when the rule is checked. In this case above, the Tcl checker procedure
dataWidthCheck is provided as the -rule_body argument and must be loaded into the
Vivado Design Suite prior to running the report_drc command.

create_drc_check -name {RAMW-1} -hiername {RAMB Checks} \
 -desc {Block RAM Data Width Check} -rule_body dataWidthCheck -severity
Advisory

You can optionally group the DRC into a special category, provide a description of the rule for
reporting purposes, and assign a severity.

You can define a message to add to the DRC report when violations are encountered. By default,
the message created by the create_drc_violation command in the Tcl checker procedure is
passed upward to the DRC object. In this case, any message defined by
create_drc_violation is simply passed through to the DRC report.

The DRC object features the is_enabled property that can be set to TRUE or FALSE using the
set_property command. When a new rule check is created, the is_enabled property is set
to TRUE as a default. Set the is_enabled property to FALSE to disable the DRC from being
used when report_drc is run.

Creating a DRC Rule Deck
You can optionally group multiple related DRC checks that can be run together into a DRC rule
deck. To do this, you must first create the DRC rule deck by using the create_drc_ruledeck
command. Once the DRC rule deck is created, DRCs can be added and removed from the DRC
rule deck by using the add_drc_checks and remove_drc_checks commands. Mixing user-
defined checks and predefined checks into a single DRC rule deck is allowed in the Vivado
Design Suite. Below is an example of creating a DRC rule deck called myrules along with the
addition and removal of DRCs from the DRC rule deck.

create_drc_ruledeck myrules
add_drc_checks -ruledeck myrules {RAMW-1 RAMW-2 RAMW-3}
remove_drc_checks {RAMW-2} -ruledeck myrules

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 69Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=69

Note: If the is_enabled property of the DRC is set to FALSE, then the DRC will not be run as part of the
DRC rule deck when running report_drc. In some cases, it might be more desirable to disable the DRC
than to remove it from the DRC rule deck.

Reporting Custom DRCs
A user-defined DRC can be run individually, with other rules, or as part of a DRC rule deck using
the report_drc command. Below are examples of running the previously defined RAMW-1 rule
individually, with other rules, and as part of the previously created DRC rule deck.

report_drc -check {RAMW-1}
report_drc -check {RAMW-1 RAMW-2}
report_drc -ruledecks myrules

Remember that the is_enabled property of the rule check must be set to TRUE in order for
report_drc to run the check.

DRC Explanation Script
There are times when the designer has a DRC rule name or a pattern of DRC rules and wants to
get an explanation about what these rules are doing. This can be done by reporting properties on
the DRC objects.

The example script below takes as input a pattern matching a set of DRC rule(s) and prints some
explanation (severity and description) for each rule. If the pattern does not match any rule then
an error message is issued.

proc explain_drc { drcs } {
 package require struct::matrix
 set loop_drcs [get_drc_checks $drcs -quiet]
 if {$loop_drcs == {}} {
 puts " Error: $drcs does not match any existing DRC rule"
 return
 }
 struct::matrix drcsm
 drcsm add columns 3
 drcsm add row {DRC_ID SEVERITY DESCRIPTION}
 foreach drc $loop_drcs {
 set description "\{[get_property DESCRIPTION [get_drc_checks $drc]]\}"
 set severity "\{[get_property SEVERITY [get_drc_checks $drc]]\}"
 set key "\{[get_property NAME [get_drc_checks $drc]]\}"
 drcsm add row "$key $severity $description"
 }
 puts "[drcsm format 2chan]";
 drcsm destroy
}

There are a number of Tcl packages embedded inside Vivado and this example script uses the
struct::matrix package to format the summary table.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 70Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=70

The following are some sample outputs from the explain_drc proc:

Vivado% explain_drc CFGBVS-1
DRC_ID SEVERITY DESCRIPTION
CFGBVS-1 Warning Missing CFGBVS and CONFIG_VOLTAGE Design Properties
Vivado% explain_drc CFGBVS-*
DRC_ID SEVERITY DESCRIPTION
CFGBVS-1 Warning Missing CFGBVS and CONFIG_VOLTAGE Design Properties
CFGBVS-2 Critical Warning CFGBVS Design Property
CFGBVS-3 Warning CONFIG_VOLTAGE Design Property
CFGBVS-4 Critical Warning CFGBVS and CONFIG_VOLTAGE Design Properties
CFGBVS-5 Critical Warning CONFIG_VOLTAGE Design Property
CFGBVS-6 Critical Warning CONFIG_VOLTAGE with HP Config Banks
CFGBVS-7 Warning CONFIG_VOLTAGE with Config Bank VCCO
Vivado% explain_drc foo
Error: foo does not match any existing DRC rule

Manipulating DRCs
DRCs are just like other objects in Tcl and their properties can be changed. Use the following
command to list the properties of a DRC Object.

Vivado% report_property [get_drc_checks RAMW-1]
Property Type Read-only Visible Value
ARCHITECTURES string* true true
CLASS string true true drc_check
DESCRIPTION string true true Block RAM Data Width Check
GROUP string true true RAMW
HIERNAME string true true RAMB Checks
IS_ENABLED bool false true 1
IS_USER_DEFINED bool true true 1
MESSAGE string true true
MSG_ID int true true 1
NAME string true true RAMW-1
SEVERITY enum false true Advisory

Note: There are two properties of the RAMW-1 DRC check that you can modify. Those are the
IS_ENABLED property and the SEVERITY property. Change the values of these properties on the DRC
Check object by using the set_property command, just like any other object.

To disable the RAMW-1 DRC check, issue the Tcl command:

Vivado% set_property IS_ENABLED false [get_drc_checks RAMW-1]

To increase the severity of the RAMW-1 DRC Check, issue the Tcl command:

Vivado% set_property SEVERITY {Critical Warning} [get_drc_checks RAMW-1]

These properties can also be changed on built-in DRC rules. In order to reset the built-in DRC
rules to factor defaults, use the following Tcl command:

Vivado% reset_drc_check [get_drc_checks]

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 71Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=71

CAUTION! Although Vivado allows you to disable and downgrade the severity of the built-in DRC
Objects, this practice is highly discouraged as it can cause unpredictable results and could potentially
cause permanent damage to the device.

For more information on Running DRCs, see the Vivado Design Suite User Guide: System-Level
Design Entry (UG895).

Custom GUI Buttons
In GUI mode, custom buttons can be added to the main toolbar. These buttons can be linked to a
Vivado command or user proc and can be defined with or without arguments. Dedicated icons
can also be used for the custom buttons. If a button defines arguments, a simple widget opens up
when the button is activated by the user.

Any change to the custom buttons is automatically saved on-disk inside the user area for the
Vivado tools version that is modified. These changes are reflected in subsequent calls of the
same Vivado tools version. Custom buttons do not need to be re-defined every time Vivado
Design Suite is started.

There are two ways to define a custom button:

• Through the GUI: Tools → Custom Commands → Customize Commands.

• Programmatically through a Tcl API.

The following table lists commands of the Tcl API to create or delete custom GUI buttons.

Table 2: Tcl APIs for Custom GUI buttons

Tcl API Description
create_gui_custom_command Create a custom GUI button
remove_gui_custom_commands Remove a custom GUI button
get_gui_custom_commands Get the list of custom GUI buttons
create_gui_custom_command_arg Create an argument for an existing custom GUI button
remove_gui_custom_command_arg Remove an argument for an existing custom GUI button
get_gui_custom_command_arg Get the list of arguments for an existing custom GUI button

A custom button can be defined with or without one or more arguments. After the custom
button has been created using create_gui_custom_command, each argument must be added
with create_gui_custom_command_arg.

When a custom button is removed, Vivado Design Suite automatically removes all its arguments.
There is no need to manually remove the arguments.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 72Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug895-vivado-system-level-design-entry
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=72

Create a Custom GUI Button
A custom button is created using the create_gui_custom_command command.

The syntax is:

create_gui_custom_command -name <arg> [-menu_name <arg>] [-description
<arg>]
 [-show_on_toolbar] [-run_proc <arg>]
 [-toolbar_icon <arg>] [-command <arg>]
 [-tcl_file <arg>] [-quiet] [-verbose]
Usage:
 Name Description

 -name Unique name of the command to create.
 [-menu_name] Menu name for the custom command.
 [-description] Display this text for the description of the menu item
 and optionally the toolbar button
 [-show_on_toolbar] Add this command to the toolbar
 [-run_proc] Needed when '-command' and 'tcl_file' options are both
 specified.
 If true, gui button will run command mentioned in
 '-command' option otherwise source script mentioned
in
 '-tcl_file' option
 [-toolbar_icon] The full path to the PNG or JPEG file to display on the
 toolbar button
 [-command] The command to execute
 [-tcl_file] The full path to the Tcl file to source
 [-quiet] Ignore command errors
 [-verbose] Suspend message limits during command execution

The name specified using -name must be unique among all the custom buttons and should not
contain any spaces. This name is used to add arguments to the button.

Example 1: Create a custom button calling the proc, myProc:

create_gui_custom_command -name "myButton" \
-menu_name "Do something" \
-command "myProc" \
-show_on_toolbar \
-run_proc true

Example 2: Create a custom button to print inside the Tcl console the clock(s) propagating
through the selected object(s):

create_gui_custom_command -name "getClock" \
-menu_name "get_clock" \
-command {get_clocks -of [get_selected_objects]} \
-description {This button returns the clocks going through the selected
objects} \
-show_on_toolbar

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 73Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=73

Remove a Custom GUI Button
A custom button can be removed either directly from the GUI or using the
remove_gui_custom_command command.

The syntax is:

remove_gui_custom_commands [-quiet] [-verbose] <names>...
Usage:
 Name Description

 [-quiet] Ignore command errors
 [-verbose] Suspend message limits during command execution
 <names> name of one or more custom commands to remove

The name that must be specified is the name defined using create_gui_custom_command -
name.

The custom buttons defined in Create a Custom GUI Button and Create a Custom GUI Button
can be removed using the following commands:

remove_gui_custom_command myButton
remove_gui_custom_command getClock

Add Arguments to a Custom Button
A custom button can have one or more arguments. Arguments are optional. After an argument is
specified, a widget opens when the button is activated by the user. Arguments are defined with
the command create_gui_custom_command_arg.

The syntax is:

create_gui_custom_command_arg -command_name <arg> -arg_name <arg>
 [-default <arg>] [-comment <arg>] [-optional]
 [-quiet] [-verbose]
Usage:
 Name Description

 -command_name Unique name of the custom command for which an argument is
 being created.
 -arg_name Unique name of the custom command argument to create.
 [-default] Default value of the custom command argument.
 [-comment] Comment for the custom command argument.
 [-optional] Make the custom command argument optional.
 [-quiet] Ignore command errors
 [-verbose] Suspend message limits during command execution

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 74Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=74

In the example below, three arguments are created for the button, myButton. The last two
arguments are optional.

create_gui_custom_command -name "myButton" \
-menu_name "Do something" \
-command "myProc" \
-show_on_toolbar \
-run_proc true
create_gui_custom_command_arg -command_name "myButton" -arg_name
"Top_Module" \
 -default "\[lindex \[find_top\] 0\]"
create_gui_custom_command_arg -command_name "myButton" -arg_name
"Output_Directory"
\
 -default "-output_dir report" -optional
create_gui_custom_command_arg -command_name "myButton" -arg_name "Force" \
 -default "-force" -optional

Xilinx Tcl Store
Vivado Design Suite features the Xilinx Tcl Store, a powerful way to deliver and share Tcl code
across the Xilinx community. The Xilinx Tcl Store delivers apps (sets of Tcl scripts) and plug-ins
that are maintained by the Xilinx community. Any Xilinx user can become a contributor. For
further information, refer to the Xilinx Tcl Store Wiki at https://github.com/Xilinx/XilinxTclStore/
wiki/Xilinx-Tcl-Store-Home.

Accessing the Xilinx Tcl Store
The Xilinx Tcl Store saves information related to the Tcl Store inside your $HOME/.Xilinx
(Linux) or %APPDATA%/Xilinx (Windows) area. The information that is saved enables the tool
to keep track of the list of apps that are installed by the user on a per Vivado release basis. These
directories are also used to cache the apps that have been refreshed and updated from the online
Xilinx Tcl Store repository.

Accessing the Tcl Store GUI

The Xilinx Tcl Store GUI is accessible under the Vivado Store from the Getting Started page when
the tool starts or from the menu bar Tools → Vivado Store.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 75Send Feedback

https://github.com/Xilinx/XilinxTclStore/wiki/Xilinx-Tcl-Store-Home
https://github.com/Xilinx/XilinxTclStore/wiki/Xilinx-Tcl-Store-Home
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=75

Figure 11: Accessing Vivado Store

Note: The first time you open the Vivado Store GUI, a disclaimer window displays the terms of usage of the
Vivado Store.

Figure 12: Vivado Store GUI Disclaimer

The Tcl Store GUI is divided into two panels.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 76Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=76

Figure 13: Xilinx Tcl Store GUI

The left panel shows the available apps. The right panel provides information on the app selected
in the left panel. The detailed information for each app includes the following:

• Name: Name of the app.

• Description: A short description of the app.

• Revision: The app revision number.

• Required: The minimum required Vivado release version for the app to work (Vivado 2014.1 in
Accessing the Tcl Store GUI).

• Company: The company name providing and maintaining the app.

• URL: A hyperlink to the app page under GitHub. The code for the various procs can be
accessed from there.

• Tcl Procs: The list of Tcl procs provided with the app. A short summary is provided for each
proc.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 77Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=77

Installing an App

To install an app, click the Install button on the right side of the app name. Once installed, the
procs defined in the app become available for use. The procs are pulled to a specific namespace
(built from the app name and company name) and behave like native Vivado built-in commands.
The new Tcl commands are automatically registered to the Help infrastructure.

Installing an App shows the steps. Xilinx recommends that you refresh the catalog (Refresh
button) before installing an app to make sure that you install the latest version of the app (Step
1). Click Install to install the app (Step 2).

Figure 14: Install Button

After the app is installed, the proc names become hyperlinks and the Install button is greyed-out.
In Installing an App the designutils app has been installed.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 78Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=78

Figure 15: designutils App Installed

Getting Help from an Installed App

After an app has been installed, additional Help is available on each proc. The detailed Help for a
proc can be accessed in three different ways. You can select the hyperlinked proc name to open a
dialog box that shows the detailed Help. You can also right-click the proc name to open a context
window with a Help menu item. Selecting Help opens the embedded Help information for the
selected proc. Finally, the detailed Help can also be accessed from the Tcl console using the full
namespace for the proc name along with the -help command line option.

The following figure shows the detailed Help for
xilinx::designutils::write_template.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 79Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=79

Figure 16: write_template Help

The same Help text can be printed from the Tcl console with:

vivado% xilinx::designutils::write_template -help

Note: The full name qualifier for this proc is xilinx::designutils::write_template and not just
write_template.

Accessing Tcl Procs from an Installed App

Once you have installed an app, all the user procs that belong to this app can be accessed from
the command line in two different ways:

• From the ::<company>::<app> namespace. When Vivado IDE starts, a wrapper is
automatically created for all the user procs for each installed app.

• From the app full namespace qualifier ::tclapp::<company>::<app>, namespace in
which the user proc has been defined.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 80Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=80

For example, after the designutils app has been installed, the user proc, write_template, can
be accessed with:

vivado% ::xilinx::designutils::write_template
vivado% ::tclapp::xilinx::designutils::write_template

The benefit of calling the proc from the ::xilinx namespace over the ::tclapp::xilinx
namespace is that the wrapper that is created by Vivado supports a number of default command
line arguments such as -help, -verbose, and -quiet, which are common to all built-in Vivado
commands.

For example:

Vivado% xilinx::designutils::write_template -help
xilinx::designutils::write_template
Description:
(User-written application)
Generates a Verilog/VHDL stub or instantiation template for the current
design in
memory (current_instance)
Syntax:
xilinx::designutils::write_template [-type <arg>] [-stub] [-template]
 [-language <arg>] [-verilog] [-vhdl]
 [-cell <arg>] [-file <arg>] [-append]
 [-return_string] [-usage] [-quiet]
 [-verbose]
Returns:
template in the case of -return_string, otherwise 0 TCL_ERROR if error
Usage:
 Name Description

 [-type] Type of template to create: stub or template
 Default: stub
 [-stub] Generate a stub (same as -type stub)
 [-template] Generate a template (same as -type template)
 [-language] Output language of the template: verilog or vhdl
 Default: verilog
 [-verilog] Verilog language (same as -language verilog)
 [-vhdl] VHDL language (same as -language vhdl)
 [-cell] Cell to generate template on. If not specified, runs on
 current_instance
 Default: current_instance
 [-file] Output file name
 Default: <module>.v or <module>.vhd
 [-append] Append to file
 [-return_string] Return template as string
 [-usage] Usage information
 [-quiet] Ignore command errors
 [-verbose] Suspend message limits during command execution
Categories:
 Description:
 Generates a Verilog/VHDL stub or instanciation template for the
current design
in memory (current_instance).
 This command must be run on a synthesized or implemented design.
Example:
::xilinx::designutils::write_template -verilog -return_string

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 81Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=81

Accessing the Source Code

There are two ways to access the source code for an app or a particular proc. The Details pane
includes a URL link to GitHub. Clicking this link opens the default browser directly to the app
page inside GitHub. The source code of individual procs can be accessed from this page.

Figure 17: Hyperlink to GitHub App Page

After an app has been installed, the proc names become hyperlinks. To view the source code,
click the proc name, and select View Source Code.

Note: The Tcl Store does not track the procs dependencies. Only the content of the selected proc is
displayed in the source window, not dependent procs. The full app code can be browsed from GitHub by
following the app's URL.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 82Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=82

Figure 18: Pro Source Code

Searching the Tcl Store

To search through the Tcl Store, use the embedded search bar located above the list of apps. The
search applies on the proc names and proc summaries. The list of apps is reduced to those having
one or more matches. After an app is selected, the matching areas are highlighted in white and
non-matching ones are grayed out.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 83Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=83

Figure 19: Search Bar

Xilinx Tcl Store Support

To report an issue for a particular app or proc, click the Support on GitHub link on the top-right
of the Tcl Store GUI. Clicking this link opens the default browser directly to the Tcl Store support
page inside GitHub. The GitHub Support page provides additional information for filing an issue.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 84Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=84

Figure 20: Hyperlink to GitHub Support Page

Refreshing the Catalog

Apps are released to Github asynchronous to the Vivado Design Suite releases. Refreshing the
catalog provides access to the latest version of an app.

Refresh the catalog by selecting the Refresh button at bottom left of the Xilinx Tcl Store window
(Step 1). This action queries the online git repository for the latest information of all the apps and
opens a dialog (Step 2). If an app is then installed, the Tcl Store mechanism automatically
downloads any newer content from the online repository.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 85Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=85

Figure 21: Refreshing the Catalog

Updating an App

After the catalog has been refreshed, the GUI notifies the user of any available updates for the
apps from the online repository. In the previous steps, the projutils app version 3.228 is installed.
After refreshing the catalog, a What's New hyperlink appears to notify you that a newer version
is available. If you select the What's New hyperlink, a notification dialog opens to confirm the
newest version available for the app, which is 3.230 in the Updating an App figure below.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 86Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=86

Figure 22: Confirming the App Version

This is a notification that the app is not updated yet. The version of the projutils app remains
3.228 until you click the Update button.

Note: It is not possible to revert an app to a previous version.

To update the app to the newest version, click the Update button (Step 1) and a dialog window
opens to confirm the update (Step 2) as shown in the following figure.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 87Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=87

Figure 23: Updating the App

After the update is completed, the installed version of projutils is upgraded to the latest version.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 88Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=88

Figure 24: Confirming the Update

Uninstalling an App

To uninstall an app, select the app in the left panel of the GUI. Then in the right panel, at the
bottom of the Details section, click the Uninstall Application hyperlink (Step 1). A dialog window
opens to confirm the uninstall (Step 2).

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 89Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=89

Figure 25: Uninstalling the App

After an app is uninstalled, the procs provided by the app are no longer available inside the Tcl
console.

Disabling Catalog Refresh

For some companies that are concerned about applications querying information outside their
firewall, there is a feature to disable refreshing of the repository. This prevents Vivado from
querying the app catalog. In this case users are limited to the current static version of the repo.
To disable refresh capability, the following Tcl param can be set in the startup
Vivado_init.tcl script for all Vivado sessions:

vivado% set_param tclapp.enableGitAccess 0

After the catalog refresh is disabled, the Refresh button is replaced by the message shown in
Disabling Catalog Refresh: Internet access is not available.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 90Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=90

Figure 26: Disabling Refresh

Coding Guidelines
The Xilinx Tcl Store is an open source repository that allows internal and external users to
contribute Tcl scripts for use by the Xilinx community. To prevent redundant efforts and ensure
consistency, a gatekeeping committee reviews requests from contributors. Refer to the online
wiki for further information on this process (https://github.com/Xilinx/XilinxTclStore/wiki/Xilinx-
Tcl-Store-Home).

This section reviews the various coding guidelines that a Tcl script must follow before being
added to the Xilinx Tcl Store. Those guidelines ensure, for instance, that the script is compliant
with the underlying Xilinx Tcl Store mechanism or that there is no name collision between proc
names and variables across all the apps and Tcl scripts. However, this section does not cover the
process you must follow to contribute to the Tcl Store. The online Wiki covers that aspect.

The Xilinx Tcl Store includes many Tcl scripts that can be used as reference and as example code.
In addition, a template app that can be found under:

<VIVADO_INSTALL>/data/XilinxTclStore/tclapp/mycompany/template/*

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 91Send Feedback

https://github.com/Xilinx/XilinxTclStore/wiki/Xilinx-Tcl-Store-Home
https://github.com/Xilinx/XilinxTclStore/wiki/Xilinx-Tcl-Store-Home
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=91

This template illustrates the directory structure that a new app must follow along with sample
scripts. This section uses the following script as example code and reference:

<VIVADO_INSTALL>/data/XilinxTclStore/tclapp/mycompany/template/myscript1.tcl

The example code in this section assumes that the app name is template and that the app is
provided and maintained by a company named mycompany.

Terminology

• A user proc is referred to in this guide as a proc that is expected to be executed by the user.

• A helper proc is a proc that can be used behind the scenes by a user proc to perform a task.
However, a helper proc is not expected to be directly executed by the user. Helper procs are
not included in the Help system.

Vivado Package

Each app requires a minimum Vivado version to work. The app can check this by requiring a
minimum Vivado package version number inside the Tcl code. The Vivado package name follows
the format 1.<release>. For example: 1.2018.1, 1.2018.2, 1.2018.3, and so forth.

If the app requires, for instance, Vivado 2018.1 to work, the following code should be added at
the very top of the script:

package require Vivado 1.2018.1

If the app depends on some functionalities added, for instance, to Vivado 2018.3, then the
following code should be used instead:

package require Vivado 1.2018.3

The required Vivado package should be the minimum Vivado release that works with the app.
This means that the Tcl scripts should not update the Vivado package that is required unless this
is necessary, for instance, if the app would be enhanced to support functionalities that are
delivered with the new release of Vivado.

App Namespace

Inside the Xilinx Tcl Store, a Tcl script belongs to an app, and an app (for example, template) is
provided by a company (for example, mycompany). An app is an organizational container that
offers some type of functionality. To avoid naming collision, each app has its own namespace.
The full namespace qualifier for an app is:

::tclapp::<company>::<app>

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 92Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=92

or

::tclapp::mycompany::template

See the examples below:

namespace eval ::tclapp::mycompany::template {namespace export my_command1
}
proc ::tclapp::mycompany::template::my_command1 { args } {
}

The above code creates the proc my_command1 under the
namespace ::tclapp::mycompany::template. Since my_command1 is expected to be
executed by the user, it needs to be exported out of the app namespace. That is done with
namespace export my_command1.

User Procs and Helper Procs

A Tcl script can define multiple user procs. A user proc is a Tcl proc (that is, a command) expected
to be executed by the user. As stated previously, all the user procs need to be exported from the
namespace of the app.

In addition to user procs, a Tcl script can define some helper procs. Helper procs are only used by
the user procs and should not be exposed to the user. As a result, helper procs should not be
exported from the namespace. Exporting a proc from the namespace is the only way to specify
to the system which of the procs should be exposed to the user through the command line
interface (scripting and/or Tcl console).

When a user proc uses helper procs, it is recommended to create a sub-namespace under the
app and move the user proc and helper procs below it. Doing this ensures that there will be no
name collision between all the helper procs within the app. It is especially important as the app
grows in size and more scripts are added along with their own helper procs.

The code below illustrates the recommended structure for the Tcl code. The user proc still exists
directly under the app's namespace, but it is just a wrapper used to call the original proc that has
been moved under the sub-
namespace, ::tclapp::mycompany::template::my_command1.

namespace eval ::tclapp::mycompany::template {
 namespace export my_command1
}
proc ::tclapp::mycompany::template::my_command1 { args } {
 # Calling the original code moved under the sub-namespace
 uplevel [concat ::tclapp::mycompany::template::my_command1::my_command1
$args]
}
eval [list namespace eval ::tclapp::mycompany::template::my_command1 {
}]
proc ::tclapp::mycompany::template::::my_command1::my_command1 { args } {

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 93Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=93

 # Here is the code of the original proc
}
proc ::tclapp::mycompany::template::my_command1::helper1 { args } {
 # Here is the code of the helper proc
}

Note: The sub-namespace ::tclapp::mycompany::template::my_command1 needs to be created
prior to defining the procs inside. The syntax to create the sub-namespace must be eval [list
namespace eval ::tclapp::mycompany::template::my_command1 {}] to prevent an error
message from the linter.

Note: To make the code easier to read, the above code does not include the mandatory meta-comments
that are discussed later in this section.

Install and Uninstall Hook Procs

Each app can have an install and uninstall proc. After they have been defined, the procs
are recognized by the Tcl Store and automatically called in specific situations:

• The install proc is automatically called when the app is installed. This is the first proc called
by the Tcl Store during the install process. After the app has been installed, the install proc
is no longer called. During the subsequent start of Vivado tools, the install proc is not
called because the app is only loaded.

• The uninstall proc is automatically called when the app is uninstalled. This is the last proc
called by the Tcl Store during the uninstall process.

The name of the install proc is ::tclapp::<company>::<app>::install and the name
of the uninstall proc is ::tclapp::<company>::<app>::uninstall.

For example:

::tclapp::mycompany::template::install
::tclapp::mycompany::template::uninstall

The install and uninstall procs can be used to handle, for example, a custom GUI button.
The button can be installed by the install proc and removed by the uninstall proc.
Multiple custom GUI buttons can be associated with an app. After a button is installed, it is
available through all subsequent calls of the same Vivado tools version, until the app is
uninstalled. The install and uninstall procs are optional. If the app does not use the
install and uninstall procs, these procs can either be left undefined or defined with an
empty body.

Below is an example of empty procs:

proc ::tclapp::mycompany::template::install { args } {
 # Summary :
 # Argument Usage:
 # Return Value:
 # Here is the code of the install proc
 # For example, a GUI custom button could be added
}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 94Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=94

proc ::tclapp::mycompany::template::uninstall { args } {
 # Summary :
 # Argument Usage:
 # Return Value:
 # Here is the code of the uninstall proc
 # For example, the GUI custom button added by the install proc should be
removed
}

The example procs below reference a custom GUI button:

proc ::tclapp::mycompany::template::install { args } {
 # Summary :
 # Argument Usage:
 # Return Value:
 ## Add Vivado GUI button for the app
 if { [lsearch [get_gui_custom_commands] myButton] >= 0 } {
 puts "INFO: Vivado GUI button for the app is already installed.
Exiting ..."
 return -code ok
 }
 puts "INFO: Adding Vivado GUI button for the app"
 create_gui_custom_command -name "myButton" \
 -menu_name "Do something" \
 -command "::tclapp::mycompany::template::my_command1" \
 -show_on_toolbar \
 -run_proc true
 create_gui_custom_command_arg -command_name "myButton" -arg_name
"Top_Module"
-default "\[lindex \[find_top\] 0\]"
 create_gui_custom_command_arg -command_name "myButton" -arg_name
"Output_Directory" -default "-output_dir report" -optional
 create_gui_custom_command_arg -command_name "myButton" -arg_name "Force" -
default
"-force" -optional
 return -code ok
}
proc ::tclapp::mycompany::template::uninstall { args } {
 # Summary :
 # Argument Usage:
 # Return Value:
 if { [lsearch [get_gui_custom_commands] myButton] >= 0 } {
 puts "INFO: Vivado GUI button for this app is removed."
 remove_gui_custom_commands "myButton"
 } else {
 puts "INFO: Vivado GUI button for this app is not installed."
 }
 return -code ok
}

Sharing Variables

The golden rule regarding variables is that global variables are forbidden. The Xilinx Tcl Store
linter checks for global variables inside the scripts and generates an error message if any global
variable is defined.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 95Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=95

If some variables need to be shared within procs of an app, then they should be declared inside
the namespace. This is done by creating the variables with the keyword variable inside the
namespace. Such variables can be used like global variables, but only within the namespace.

The code below creates the variable verbose that can be shared within all the procs that belong
to the same namespace. The variable is initialized to 0:

namespace eval ::tclapp::mycompany::template {
 variable verbose 0
 }

To access the variable inside a proc, the variable should be declared with the keyword variable
inside the proc.

For example:

proc ::tclapp::mycompany::template::::my_command1::my_command1 { args } {
 variable verbose
 # The variable verbose can be accessed here
 set verbose 1
}
proc ::tclapp::mycompany::template::my_command1::helper1 { args } {
 variable verbose
 # The variable verbose can be accessed here
 if {$verbose} {
 ..
 }
}

Note: The variable verbose can also be accessed from any namespace (including the global namespace) by
using the full namespace qualifier. For example:

set ::tclapp::mycompany::template::verbose 1

Meta-Comments

All the procs inside the Tcl scripts must include some mandatory meta-comments. This applies to
user procs (exported out of the namespace) as well as helper procs. The Xilinx Tcl Store linter
generates error messages if the meta-comments are missing. The meta-comments for all the
exported procs must have complete information. The helper procs however can have empty
meta-comments, but the meta-comments must be declared.

The meta-comments provide information to the system such as a short description of what the
procs are doing, some category information as well as the list of the command line options
supported by the procs. The meta-comments must be included between the proc definition and
before the first line of code. All of the meta-comments are mandatory.

The list of mandatory meta-comments is as follows:

• Summary: Summary of what the proc is doing. This can be a multi-line summary. The summary
is displayed inside the GUI as the proc short description.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 96Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=96

• Argument Usage: List of command line arguments in the proc. This meta-comment is used to
build the Help system. Another section in this document describes the supported format.

• Return Value: Use this meta-comment to specify the possible return values for the proc. This
meta-comment is used to build the Help system.

• Categories: List of categories the app belongs to. Use this meta-comment to specify which
categories in the Vivado Help system your app should be listed under. In this meta-comment,
"Categories:" should be followed by a comma-separated list. By convention, the first
category listed should always be xilinxtclstore followed by the app name.

Below is an example of meta-comments needed for a user proc.

proc ::tclapp::mycompany::template::my_command1 { args } {
 # Summary: Multi-lines summary of
 # what the proc is doing
 # Argument Usage:
 # [-verbose]: Verbose mode
 # [-file <arg>]: Report file name
 # [-append]: Append to file
 # [-return_string]: Return report as string
 # [-usage]: Usage information
 # Return Value:
 # return report if -return_string is used, otherwise 0. If any error
occur TCL_ERROR
is returned
 # Categories: xilinxtclstore, template
 # The code for the proc starts below

}

Note: The detailed meta-comments must be included in the user proc being exported out of the
namespace, not the proc my_command1 that was created in the sub-namespace with its helper proc.

Below is an example of meta-comment for a helper proc. All the meta-comments are defined
although they are empty:

proc ::tclapp::mycompany::template::my_command1::lshift {inputlist} {
 # Summary :
 # Argument Usage:
 # Return Value:
 # Categories:
 # The code starts below

}

To summarize, the rule is that all Tcl procs inside the scripts must include all the meta-comments.
However, on the user procs exported from the namespace need to have detailed information.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 97Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=97

Meta-Comment for Command Line Arguments

The user proc's command line arguments must be described with the meta-comment Argument
Usage inside the user procs. This meta-comment is used by the Help system to generate the
message when <command> -help is executed by the user or when the proc help is displayed in
the GUI. For example:

 # Argument Usage:
 # [-verbose]: Verbose mode
 # [-file <arg>]: Report file name
 # [-append]: Append to file
 # [-return_string]: Return report as string
 # [-usage]: Usage information

The above meta-comment Argument Usage generates the following message from the Help
system:

Syntax:
xilinx::designutils::write_template [-verbose] [-file <arg>] [-append]
 [-return_string] [-usage] [-quiet]
Usage:
 Name Description

 [-verbose] Verbose mode
 Default: 0
 [-file] Report file name
 Default: None
 [-append] Append to file
 Default: 0
 [-return_string] Return report as string
 Default: 0
 [-usage] Usage information
 Default: 0
 [-quiet] Ignore command errors

It is important to keep in mind that the meta-comment Argument Usage is not a preprocessing
of the command line argument by Vivado before calling the Tcl proc. It is only used by the Help
system. The Tcl code of the proc has to handle the complete processing of the command line
arguments.

User Procs without Command Line Argument

If the user proc does not provide any command line arguments, the meta-comment Argument
Usage, although mandatory, must be left empty. For example:

proc ::tclapp::mycompany::template::my_command2 {} {
 # Summary : A one line summary of what this proc does
 # Argument Usage:
 # Return Value:
 # TCL_OK is returned with result set to a string
 # Categories: xilinxtclstore, template

}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 98Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=98

User Procs with Command Line Argument

Like any Tcl proc, the arguments definition of the user procs can be either position-based or
accept a variable list of arguments through the args variable.

proc ::tclapp::mycompany::template::my_command2 { arg1 {optional1 ,} } {

}

or,

proc ::tclapp::mycompany::template::my_command2 { args } {

}

In both cases, it is up to the developer to define the meta-comment Argument Usage to reflect
the list of command line arguments accepted by the proc. The system does not check the
consistency between the list of arguments from the meta-comment Argument Usage with the
actual arguments definition.

Because the meta-comment Argument Usage is used to build the Help message, whatever
above form is used for the proc to pass argument, the meta-comment must be updated
accordingly. For example:

proc ::tclapp::mycompany::template::my_command2 { arg1 {optional1 ,} } {
 # Summary : A one line summary of what this proc does
 # Argument Usage:
 # arg1 : A one line summary of this argument
 # [optional1=,] : A one line summary of this argument
 # Return Value:
 # TCL_OK is returned with result set to a string
 # Categories: xilinxtclstore, template

}

or,

proc ::tclapp::mycompany::template::my_command2 { args } {
 # Summary : A one line summary of what this proc does
 # Argument Usage:
 # arg1 : A one line summary of this argument
 # [optional1=,] : A one line summary of this argument
 # Return Value:
 # TCL_OK is returned with result set to a string
 # Categories: xilinxtclstore, template

}

Note: Using args should always be preferred whenever possible over using position-based arguments. The
args method provides the best user experience as the list and order of the command line arguments has
no restriction. If the proc supports only one or two command arguments then the position-based can be
still used, but is not as user-friendly since the arguments are ordered and the user does not know in which
order the arguments should be passed to the proc (information not provided by the Help system).

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 99Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=99

Meta-Comment Argument Usage

This is the most complex of the meta-comments. There should be one line for each mandatory or
optional argument supported by your proc. Optional arguments should be enclosed within [].
Arguments that are accompanied by a value must be followed by the literal text '<arg>' (without
quotes), indicating to the user where the value should be placed. The summary should explain
what are the valid values that a user could use. You can also specify a default value, which is a
value that will be assumed if the user does not specify the given optional argument. You can also
have optional arguments that do not take any value (these are often referred to as "flags"). A
flag's presence on the command line implies a value of true, indicating that some optional action
should be taken by the app. An exception to this rule is if the name of the flag is prefixed with
"no_" (for example, -no_cleanup), in which case a value of false is implied, indicating that the
app will not take some action, which by default it normally performs.

You can also specify positional arguments. A positional argument is one for which just a value is
specified and that has no corresponding flag (for example, -arg1).

For example, the following meta-comment:

 # Argument Usage:
 # timingPath : mandatory name
 # [-append]: optional flag
 # -cell <arg>: mandatory argument with no default value
 # [-template <arg> = stub]: optional argument with a default value. The
default
value is: stub

Results in the following Help message:

Syntax:
mycompany::template::mycommand [-append] -cell <arg> [-template <arg>]
 [-quiet] [-verbose] <timingPath> <-
name>
Returns:
template in the case of -return_string, otherwise 0 TCL_ERROR if error
Usage:
 Name Description

 [-append] optional flag
 Default: 0
 -cell mandatory argument with no default value
 [-template] optional argument with a default value. The default value
is:
 stub
 Default: stub
 [-quiet] Ignore command errors
 [-verbose] Suspend message limits during command execution
 <timingPath> mandatory

The actual processing of the command line arguments has to be programmatically done inside
the proc.

Note: The -append argument is optional and has a default value of 0. After the -append argument is
specified on the command line, the system returns 1.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 100Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=100

Example Script

The complete script used as example in this section can be found under:

<XilinxTclStore>/tclapp/mycompany/template/myscript1.tcl
package require Vivado 1.2014.1
namespace eval ::tclapp::mycompany::template {
 # Export procs that should be allowed to import into other namespaces
 namespace export my_command1
}
proc ::tclapp::mycompany::template::my_command1 { args } {
 # Summary: Multi-lines summary of
 # what the proc is doing
 # Argument Usage:
 # [-verbose]: Verbose mode
 # [-file <arg>]: Report file name
 # [-append]: Append to file
 # [-return_string]: Return report as string
 # [-usage]: Usage information
 # Return Value:
 # return report if -return_string is used, otherwise 0. If any error
occur TCL_ERROR
is returned
 # Categories: xilinxtclstore, template
 uplevel [concat ::tclapp::mycompany::template::my_command1::my_command1
$args]
}
Trick to silence the linter
eval [list namespace eval ::tclapp::mycompany::template::my_command1 {
}]
proc ::tclapp::mycompany::template::my_command1::lshift {inputlist} {
 # Summary :
 # Argument Usage:
 # Return Value:
 # Categories:
 upvar $inputlist argv
 set arg [lindex $argv 0]
 set argv [lrange $argv 1 end]
 return $arg
}
proc ::tclapp::mycompany::template::my_command1::my_command1 {args} {
 # Summary :
 # Argument Usage:
 # Return Value:
 # Categories:
 #---
 # Process command line arguments
 #---
 set error 0
 set help 0
 set filename {}
 set cell {}
 set returnString 0
 while {[llength $args]} {
 set name [lshift args]
 switch -regexp -- $name {
 -cell -
 {^-c(e(ll?)?)?$} {
 set cell [lshift args]
 }
 -file -
 {^-f(i(le?)?)?$} {

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 101Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=101

 set filename [lshift args]
 if {$filename == {}} {
 puts " -E- no filename specified."
 incr error
 }
 }
 -append -
 {^-a(p(p(e(nd?)?)?)?)?$} {
 set mode {a}
 }
 -return_string -
 {^-r(e(t(u(r(n(_(s(t(r(i(ng?)?)?)?)?)?)?)?)?)?)?)?$} {
 set returnString 1
 }
 -usage -
 {^-u(s(a(ge?)?)?)?$} {
 set help 1
 }
 default {
 if {[string match "-*" $name]} {
 puts " -E- option '$name' is not a valid option. Use the -
usage option
 for more details"
 incr error
 } else {
 puts " -E- option '$name' is not a valid option. Use the -
usage option
 for more details"
 incr error
 }
 }
 }
 }
 if {$help} {
 puts [format {
 Usage: my_command1
 [-cell <arg>] - Cell to generate template on. If not
specified,
 runs on current_instance
 [-file <arg>] - Output file name
 Default: <module>.v or <module>.vhd
 [-append] - Append to file
 [-return_string] - Return template as string
 [-usage|-u] - This help message
 Description: Get information on a cell and generate a report
 Example:
 tclapp::mycompany::template::my_command1
 tclapp::mycompany::template::my_command1 -cell ila_v2_1_0 -
return_string
}]
 # HELP -->
 return {}
 }
 if {$error} {
 error " -E- some error(s) happened. Cannot continue"
 }
 return -code ok "my_command1 result"
}

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 102Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=102

You can run the Xilinx Tcl Store linter on your Tcl script using the Vivado command linter. The
arguments are a list of Tcl script(s). For example:

vivado% linter myscript.tcl
vivado% linter [glob -nocomplain *.tcl]

Every error generated by the linter should be fixed. To be submitted, all the Tcl scripts of the app
must pass the linter.

Contributing to the Xilinx Tcl Store
If you are interested to contribute to the Xilinx Tcl Store, please refer to the online wiki at:

https://github.com/Xilinx/XilinxTclStore/wiki/Xilinx-Tcl-Store-Home

The Wiki includes detailed information about the various steps and workflow.

Tcl Scripting Tips
The runtime and efficiency of Tcl scripts can be improved by following a few rules. The following
examples are a few suggestions for ways to improve runtime and memory footprint when using
Tcl scripting in the Vivado Design Suite.

Performance via Nesting
When a Tcl command is executed from the Tcl console, the command is first being processed at
the level of the Tcl interpreter. If there is no syntax error, the command is then executed at the C
++ level. If the command returns a value, the C++ code sends the returned value to the Tcl
interpreter through some layers of software. This layering back and forth between the Tcl
interpreter and the low-level C++ code has some runtime penalty. However, when nesting is
used within the same command, nested commands are directly called from the C++ code. The C+
+ code only returns to the Tcl interpreter once the whole command has been completed. For
example, this code:

set nets [get_nets -hier]
set pins [get_pins -of_objects $nets]

is slower than this code:

set pins [get_pins -of_objects [get_nets -hier]]

This is because the first code sample creates an intermediate Tcl variable, nets.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 103Send Feedback

https://github.com/Xilinx/XilinxTclStore/wiki/Xilinx-Tcl-Store-Home
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=103

However, it might sometimes be preferable to create intermediate Tcl variables if the results of
these variables can be reused in other parts of the code.

Caching Objects
Objects or lists of objects should be cached in Tcl variables so they can be reused later.

For example, if the same list of nets is going to be reused multiple times in the script, it does not
make sense to do the same query over and over. Although the Tcl commands in the Vivado tools
have been implemented efficiently, every Tcl query goes back and forth between the Tcl
interpreter and the lower level C++ code of the application. This C++/Tcl interface consumes
runtime that should be avoided when possible.

Use the different filtering capabilities of the Vivado tools as often as possible. Tools such as
effective search pattern definition, -of_objects option, the -filter option, and the filter
command can reduce run-time. Those features have been implemented at a very low level in the
application, and are very efficient in terms of runtime and memory.

By caching the results of a general query, a list of objects can be post-processed using the
filter command to create a sub-list of objects. You can also use standard Tcl list commands to
parse the results assigned to the Tcl variable without accessing the in-memory design unless
necessary.

set allCells [get_cells * -hier]
lsort $allCells ; # Returns a sort ordered list of all cells
filter $allCells {IS_PRIMITIVE} ; # Returns only the primitive cells
filter $allCells {!IS_PRIMITIVE} ; # Returns non-primitive cells

Object Names and the NAME Property
While some Tcl commands expect a design object, other commands may expect a string input.
The Vivado Design Suite has been implemented to allow design objects to be passed directly to
Tcl commands, even those expecting a string argument. In this case, the hierarchical name of the
design object is passed to the Tcl command as a string. There is no need to access the NAME
property of the object in order to pass it to the Tcl command.

For example in the following regexp command, both IF statements are equivalent, since in both
cases the Tcl interpreter is passed the name of the object:

if {[regexp {.*enable.*} $MyObject]} { ... }
if {[regexp {.*enable.*} [get_property NAME $MyObject]]} { ... }

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 104Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=104

In this example, the first expression is not only easier to read than the second expression, it will
also run much faster than the second, since it does not have to access and return the properties
on the object. The get_property command in the second statement will cause the Vivado
tools to iterate between the Tcl interpreter and the underlying C++ application code to access
and return the object properties. If this is done in a looping construct, for multiple objects, it can
significantly increase the run time for your Tcl script.

Connecting and Disconnecting Nets
The runtime for connecting or disconnecting a collection of objects can vary significantly
depending on which command line options are used.

disconnect_net: for disconnecting a large number of nets or pins, when the list of netlist
elements is already available as first-class objects, the command line option -pinlist should be
used instead of -objects. However, when the netlist elements are only known by name (string),
then -objects can be used and results in Vivado automatically converting the strings into first-
class objects. The -objects forces the conversion into first-class objects even when first-class
objects are passed as argument.

connect_net: for faster runtime, the command line option -dict should be favored as an
alternative to -net_object_list but it requires a list of net and pin/port object pairs

For example:

set myNetA [get_nets netA]
set myPin1 [get_pins pin1]
set myPin2 [get_pins pin2]
set myPin3 [get_pins pin3]
connect_net -dict { $myNetA $myPin1 $myNetA $myPin2 $myNetA $myPin3 }

get_property and Sorted Lists
The list of elements (strings or objects) returned by get_property is ordered based on the
input list of objects. It also has the same number of elements. This property can be used to
iterate with the Tcl command foreach through multiple lists at once.

Inefficient code:

set cells [get_cells -hier -filter {...}]
foreach cell $cells {
 set loc [get_property LOC $cell]
 ...
}

In the code above, the command get_property LOC $cell is executed for each cell inside
the collection $cells.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 105Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=105

Efficient code:

set cells [get_cells -hier -filter {...}]
foreach cell $cells loc [get_property LOC $cells] {
 ...
}

In the code above, the command get_property LOC $cells is executed only once which
improves the runtime significantly when a long list of objects is processed. This is possible
because the list returned by get_property has the same number of elements as the Tcl list
$cells and the returned elements are in the same order as the input list.

Formatting Lists of Objects
When a list is returned from the get_* commands, the list is un-formatted and returned to
stdout in a single line delimited by a space. This is shown in the following example:

get_cells
A B clk_IBUF_inst rst_IBUF_inst din0_IBUF_inst din1_IBUF_inst
dout0_OBUF_inst
dout1_OBUF_inst dout2_OBUF_inst dout3_OBUF_inst clk_IBUF_BUFG_inst

This un-formatted return makes it difficult to see what has been returned in the Tcl Console and
the Vivado IDE. To have each item in the list returned on a separate line, simply execute the
command nested in a join command, with the newline character, '\n', as follows:

join [get_cells] \n
A
B
clk_IBUF_inst
rst_IBUF_inst
din0_IBUF_inst
din1_IBUF_inst
dout0_OBUF_inst
dout1_OBUF_inst
dout2_OBUF_inst
dout3_OBUF_inst
clk_IBUF_BUFG_inst

The list returned by the get_* command is unaffected by the join command.

Note: When converting a Vivado collection of objects into a string representation, not all the objects have
to be included in the string representation. The number of objects to be included in the string
representation is defined with the parameter tcl.collectionResultDisplayLimit (default: 500).
Refer to section Collection versus String Representation for more information.

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 106Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=106

Finding Vivado Tcl Commands by Options
The following procedure, findCmd, searches through the syntax of all the Tcl commands in the
Vivado Design Suite, and displays a list of commands that support the specified option:

proc findCmd {option} {
 foreach cmd [lsort [info commands *]] {
 catch {
 if {[regexp "$option" [help -syntax $cmd]]} {
 puts $cmd
 }
 }
 }
} ; # End proc

To find the Vivado tools commands that support the -return_string option use:

findCmd return_string

Writing Efficient Code
One way to improve runtime is to write code efficiently such that a container is built and a
command runs on the entire container versus running the command within a loop on each item
that would be part of the container. The following example illustrates this and is similar to that
seen in the Creating Custom Design Rules Checks (DRCs) section.

Inefficient code:

foreach bram [get_cells -hier -filter {PRIMITIVE_SUBGROUP == bram}] {
 set bwidth [get_property WRITE_WIDTH_B $bram]
 if { $bwidth > 36} {
 highlight_object -color red [get_cells $bram]
 }; # End IF
}; # End FOR

Efficient code:

foreach bram [get_cells -hier -filter {PRIMITIVE_SUBGROUP == bram}] {
 set bwidth [get_property WRITE_WIDTH_B $bram]
 if { $bwidth > 36} {
 lappend bram_list $bram
 }; # End IF
}; # End FOR
highlight_object -color red [get_cells $bram_list]

An even more compact and efficient way to code this is to apply the filter as part of the
get_cells command. This removes the need to perform a foreach loop with individualized
checking at the expense of a slightly more complicated filter.

highlight_object -color red [get_cells -hier -filter {PRIMITIVE_SUBGROUP ==
bram &&
WRITE_WIDTH_B > 36}]

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 107Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=107

Getting User Input
In a traditional tclsh shell, your input is typically captured using the stdin channel. For
example:

gets stdin answer

In the Vivado IDE, the Tcl code can be executed in different environments that are most of the
time incompatible with the stdin channel. Unless you know that the script will only be
executed in Vivado Tcl mode on a local shell, stdin cannot be used to get user input.

Your input is typically used to alter the behavior of a script or set values for parameters. In this
regard, getting some information through stdin is unreliable and prone to errors (typos, wrong
value, etc.).

It is recommended that you provide custom values to a script through a configuration file that
can be easily read by the Tcl script. A configuration file can be as simple as a list of Tcl variables in
a file that can be imported in a script using the command: source

<configuration_file>

Such a configuration file can be used whether the Vivado IDE is run in batch mode or using a
remote machine (LSF, etc.).

Chapter 1: Tcl Scripting in Vivado

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 108Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=108

Appendix A

Additional Resources and Legal
Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator (DocNav) provides access to Xilinx documents, videos, and
support resources, which you can filter and search to find information. To open DocNav:

• From the Vivado® IDE, select Help → Documentation and Tutorials.

• On Windows, select Start → All Programs → Xilinx Design Tools → DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other topics,
which you can use to learn key concepts and address frequently asked questions. To access the
Design Hubs:

• In DocNav, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on DocNav, see the Documentation Navigator page on the Xilinx website.

References
These documents provide supplemental material useful with this guide:

Appendix A: Additional Resources and Legal Notices

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 109Send Feedback

https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=109

1. Vivado Design Suite Tcl Command Reference Guide (UG835)

2. Vivado Design Suite User Guide: Getting Started (UG910)

3. Vivado Design Suite User Guide: Using Constraints (UG903)

4. ISE to Vivado Design Suite Migration Guide (UG911)

5. Vivado Design Suite User Guide: Design Flows Overview (UG892)

6. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

7. Vivado Design Suite User Guide: System-Level Design Entry (UG895)

8. Tcl Developer Xchange

9. Vivado Design Suite Documentation

Revision History
The following table shows the revision history for this document.

Section Revision Summary
08/06/20221 Version 2022.1

General Updates Editorial updates only. No technical content updates.

Please Read: Important Legal Notices
The information disclosed to you hereunder (the "Materials") is provided solely for the selection
and use of Xilinx products. To the maximum extent permitted by applicable law: (1) Materials are
made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS ALL WARRANTIES AND
CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY
PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether in contract or tort, including
negligence, or under any other theory of liability) for any loss or damage of any kind or nature
related to, arising under, or in connection with, the Materials (including your use of the
Materials), including for any direct, indirect, special, incidental, or consequential loss or damage
(including loss of data, profits, goodwill, or any type of loss or damage suffered as a result of any
action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx
had been advised of the possibility of the same. Xilinx assumes no obligation to correct any
errors contained in the Materials or to notify you of updates to the Materials or to product
specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of
Xilinx's limited warranty, please refer to Xilinx's Terms of Sale which can be viewed at https://

Appendix A: Additional Resources and Legal Notices

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 110Send Feedback

https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug835-vivado-tcl-commands
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug910-vivado-getting-started
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug903-vivado-using-constraints
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2022.1;d=ug911-vivado-migration.pdf
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug892-vivado-design-flows-overview
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug893-vivado-ide
https://docs.xilinx.com/access/sources/dita/map?Doc_Version=2022.1%20English&url=ug895-vivado-system-level-design-entry
http://www.tcl.tk
https://www.xilinx.com/cgi-bin/docs/rdoc?t=vivado+docs
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=110

www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and support terms contained
in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or
for use in any application requiring fail-safe performance; you assume sole risk and liability for
use of Xilinx products in such critical applications, please refer to Xilinx's Terms of Sale which can
be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS "XA" IN THE PART NUMBER) ARE NOT
WARRANTED FOR USE IN THE DEPLOYMENT OF AIRBAGS OR FOR USE IN APPLICATIONS
THAT AFFECT CONTROL OF A VEHICLE ("SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262
AUTOMOTIVE SAFETY STANDARD ("SAFETY DESIGN"). CUSTOMER SHALL, PRIOR TO USING
OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY TEST
SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION
WITHOUT A SAFETY DESIGN IS FULLY AT THE RISK OF CUSTOMER, SUBJECT ONLY TO
APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

Copyright

© Copyright 2012-2022 Xilinx, Inc. Xilinx, the Xilinx logo, Alveo, Artix, Kintex, Kria, Spartan,
Versal, Vitis, Virtex, Vivado, Zynq, and other designated brands included herein are trademarks of
Xilinx in the United States and other countries. All other trademarks are the property of their
respective owners.

Appendix A: Additional Resources and Legal Notices

UG894 (v2022.1) June 8, 2022 www.xilinx.com
Using Tcl Scripting 111Send Feedback

https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com
https://www.xilinx.com/about/feedback/document-feedback.html?docType=User_Guides&docId=UG894&Title=%20Vivado%20Design%20Suite%20User%20Guide&releaseVersion=2022.1&docPage=111

	 Vivado Design Suite User Guide
	Table of Contents
	Ch. 1: Tcl Scripting in Vivado
	Introduction
	Navigating Content by Design Process

	A Brief Overview of Tcl
	Getting Help
	Platform Specific Tcl Behaviors
	Compilation and Reporting Example Scripts
	Compilation with a Non-Project Flow
	Details of the Sample Script

	Compilation with a Project Flow
	Details of the Sample Script

	Loading and Running Tcl Scripts
	Initializing Tcl Scripts
	Sourcing Tcl Scripts
	Executing a Tcl Script at Startup
	Using Tcl Scripts in a Constraints Set
	XDC Constraints: read_xdc versus source
	Defining Tcl Hook Scripts
	Sharing Hook Scripts Between Steps
	Customizing the GUI

	Writing a Tcl Script
	Defining Tcl Procedures
	Parsing Command Line Arguments
	Local and Global Variables
	Namespaces for Procedures
	Template Script

	Accessing Design Objects
	Getting Objects By Name
	Using the -hierarchical Option
	Using the -filter and -regexp Options
	Searching for Pins
	Filtering Results

	Getting Objects by Relationship
	get_nets Command
	Timing Path Object
	Persistency of Objects

	Handling Lists of Objects
	Collection versus String Representation

	Redirecting Output
	Accessing Files
	Working with Strings

	Controlling Loops
	Error Handling
	Checking Validity of Variables
	Handling Tcl Errors

	Accessing Environment Variables
	Calling External Programs
	Vivado Integrated Design Environment (IDE)/Tcl Modes versus Batch Mode
	Creating Custom Design Rules Checks (DRCs)
	Creating a Tcl Checker Procedure
	Creating a DRC Check
	Creating a DRC Rule Deck
	Reporting Custom DRCs
	DRC Explanation Script
	Manipulating DRCs

	Custom GUI Buttons
	Create a Custom GUI Button
	Remove a Custom GUI Button
	Add Arguments to a Custom Button

	Xilinx Tcl Store
	Accessing the Xilinx Tcl Store
	Accessing the Tcl Store GUI
	Installing an App
	Getting Help from an Installed App
	Accessing Tcl Procs from an Installed App
	Accessing the Source Code
	Searching the Tcl Store
	Xilinx Tcl Store Support
	Refreshing the Catalog
	Updating an App
	Uninstalling an App
	Disabling Catalog Refresh

	Coding Guidelines
	Vivado Package
	App Namespace
	User Procs and Helper Procs
	Install and Uninstall Hook Procs
	Sharing Variables
	Meta-Comments
	Meta-Comment for Command Line Arguments
	User Procs without Command Line Argument
	User Procs with Command Line Argument
	Meta-Comment Argument Usage
	Example Script

	Contributing to the Xilinx Tcl Store

	Tcl Scripting Tips
	Performance via Nesting
	Caching Objects
	Object Names and the NAME Property
	Connecting and Disconnecting Nets
	get_property and Sorted Lists
	Formatting Lists of Objects
	Finding Vivado Tcl Commands by Options
	Writing Efficient Code
	Getting User Input

	Appx. A: Additional Resources and Legal Notices
	Xilinx Resources
	Documentation Navigator and Design Hubs
	References
	Revision History
	Please Read: Important Legal Notices

